CSCI 5333 -- Daily Plans for Spring 2001

Week 4

Knowledge-Based Management Systems
Knowledge-Based Management Systems

Why do we need new systems?

There are two major flaws in the relational model:

1. The relational model provides a fixed set of data types: for example, character, numeric, date, Boolean. The procedures that operate on the date are separate from the data. e.g., there is no behavioral characteristics associated with the data. These problems are resolved in an object oriented DBMS.

2. We can not pose recursive queries to the relational model. For example, suppose we have a genealogy database with 1 relation (c,p), with the meaning: if the tuple (c,p) is in parent, then p is a parent of c. (The problem is that we can not get all the ancestors of c.)

We can find the grandparents of a value for c by using the Cartesian Product of parent with itself. We can also find great-grand parents, … However, there is no relational algebra expression that will return all of the ancestors for a value of c.

(cf. The Theory of Relational Databases by David Maier, page 529)

We wish to study a knowledge base Database Management System that retains the expressive power of the relational algebra and supports recursive queries.

Datalog
Datalog will be the query facility that will be used to illustrate the KBMS.

A datalog statement consists of atomic formulas which are predicate symbols with arguments.

A predicate essentially is a Boolean procedure which returns True, or False.

We can think of a predicate symbol as representing a relation. We shall represent predicates and constants with strings of lower case characters and variables with upper case characters.

For example, suppose we have a relational schema R(X,Y,Z) as an instance

X
Y
Z

a
b
a

1
2
3

4
1
4

We can regard the relation as a predicate r; a simple query in terms of the predicate might be

R(X,b,X).

The tuple (a,b,a) is the only solution to this query; in the relational algebra, the query is equivalent to

($2 = b ($1 = $3 (R)

Suppose that we wanted all tuples for which the values in column 1 and 3 are equal

R(X,Y,X).

This is equivalent to

($1 = $3 (R)

Facts and Rules
A datalog program consists of facts and rules. Facts are statements about the real world; "Susan is the parent of Jimmy." Rules are sentences which permit us to deduce knowledge from other facts and other rules. For example, the rule "if X is a parent of Y, and Y is a parent of Z, then X is a grandparent of Z"

Definition
A Horne Clause has the format

L0 :- L1 & L2 & L3 & … Ln.

where each Li is a literal consisting of a predicate p with arguments t1, t2, …, ti
i.e. Li = pi (t1, t2, …, tn) where the arguments are variables or constants

The left Hand Side of a Horne Clause is its head (L0) and the right hand side is its body (L1 & L2 & L3 & … Ln)

A Horne Clause with an empty body is a fact. For example:

parent(georgeW, georgeSr).

parent(georgeW, barbara).

parent(georgeW, X).

A fact with no variables is called ground. For example:

parent(constant, constant).

If the Horne clause has at least one literal its body, it is called a rule.

Note that literals may contain negated predicates:

p(t1,…, tn)

Definition A Datalog program consists of facts and rules which must satisfy the following:

1) Each fact is ground. And

2) Each variable that appears in the head must also appear in the body.

Note:
A Horne Clause is really an if statement:

L0 :- L1 & L2.

We say “if L1 and L2, then L0”

For example, suppose we have a predicate (or relation) parent(c,p) with the meaning p is a parent of C.

The Datalog program to find all ancestors is given by:

ancestor(C,P) :- parent(C,P).

ancestor(C,P) :- ancestor(C,X) & parent(X,P).

Thus, ancestor(joe,P).

We had a Datalog program

ancestor(C,P) :- parent(C,P).

ancestor(C,P) :- ancestor(C,X) & parent.

(The two statements above are called persistence.. it in the database)
Parent

Ancestor

child
parent

object
ancestor

The datalog program will

1) Copy all tuples in Parent to Ancestor.

2) Go through and add items to Ancestor.

3) Repeat process on ancestor.

Who are the ancestors of joe?

To use:
ancestor(joe,X).

ancestor(X,,Y) ? (this gives the whole table

relational can't do recursion

Models
Definition
An interpretation for a set of predicates is an assignment of T or F for every choice of values for the arguments from some (infinite) domain.

For example, consider two predicates: p(X,Y) and q(Z). We say p has an arity 2 and q has arity 1. One interpretation for these predicates is

M = {p(l,l), p(1,2), q(l), q(3), q(5)}
all other values for the variables make the predicates false.

Truth of Horne Clauses

A Horne clause has the form

p0() :- p1() & p2() & …

Note: The subscripts merely imply that we may have multiple predicates in one horne clause.

For example, we might have

q(X) :- p(X) & r(X,Y).

It is understood as follows:

if p(X) and r(X,Y), then q(X)

The only condition in which an if statement is false is for the if clause to be true and the then clause to be false (works like implies in Boolean logic)

A Horne clause (or rule) is false only if the body is true and the head is false.

**Definition
To be a model for a set of rules, the interpretation must make the rules true regardless of the value assigned to the variables in the rules.

For example, consider

q(X) :- r(X) & p(X).

s(X) :- q(X) & r(X).

An interpretation for the predicate might be:

M1 = {r(l), p(l), q(l), s(l), q(2), r(2), s(2)}

To show that this interpretation is a model for these 2 rules, we must show that any value of X substituted in the rules makes them true.

a) if X = l
p(l) and r(l) are true, or the body p(l) & r(l) are true; then, the rule "q(l) :- r(l) & p(l)." is true. Since both q(l) and r(l) are true and s(l) is true, then the rule "s(l) :- q(l) & r(l)." is true.

b) if X = 2
since p(2) is false, the rule "q(2) :- p(2) & r(2)" is true. Since q(2) and r(2) are true and s(2) is true means that the rule

"s(2) :- q(2) & r(2)." is true.

c) if X =
any other values other than 1 or 2; since both bodies are false for this value of X, the rules are true.

Thus M1 is a Model for the rules. Now, define

M2 = M1 U {s(3)}.

M2 is the union of M1 with this new rule.

M2 is also a model.

We had the example

q(X) :- r(X) & p(X).

s(X) :- q(x) & r(X).

NOTE: r and p are placeholders in the example above.

Basically, we do not want extraneous information in the database just to satisfy a model.

We note that an interpretation would not be a model for the rule if these were values for the variable that make the body true, but the head false.

Our understanding of a datalog program is that predicates that do not appear as head of any rule represent actual tables of data. The predicates that appear as heads of rules may be loosely regarded as "views" or they are derived data predicates.

We have seen that it is possible for a predicate head to be true while the body is false and thus the rule is true and we continue to have a model. For example, s(3) is true in our interpretation M2 while q(3) and r(3) are false.

Thus, it is possible to have extraneous values of the variables that make predicate heads true while bodies are false - in effect, we have "true" information that was not derivable from the data in the database tables.

Given that we can not remove data from the in-place tables, we want to remove all values from the interpretation that cannot be derived.

For example, consider

q(X) :- r(X) & p(X).

s(X) :- q(X) & r(X).

we only want values in the head that are derivable from the body.

Assume we have the instance {(r(l), p(l), r(2)}. In order to have a model, we must add q(l) and s(l).

in-place table derived data

Thus, {(r(1), p(1), r(2), q(1), s(1)} is a model for the two datalog rules. This is also a minimal model.

Note: Facts that are ground are in-place tables.

Definition:
Let.M be a model for a set of rules corresponding to some interpretation. M is a minimal model if we can not change any head predicate from True to False and continue to have a model.

The minimal model represents the derived information from our tables using the rules!

Thus:
Given that negations are not permitted for a set of rules and interpretations having a fixed set of truth values for in-place tables, the minimal model is unique.

Extensional and Intensional Predicates

Definition
A predicate that corresponds to an actual table in the database is called an extensional predicate(EDB).

A predicate that is defined via the rules is called intensional (IDB).

If we had s(X) :- s(X) & p(X). The s is intensional.

Built-in Predicates

Lets define a predicate lt(X,Y) with the value true in an interpretation whenever X < Y.

We shall permit predicates to be represented by their standard comparison.

For example,

q(X) :- r(X) & s(Y) & X < Y.

A predicate of this type is called built-in, otherwise, it is called ordinary.

As an example of a datalog program, suppose we have two EDBS:

m(C,M) and f(C,F)

with m(c, m) meaning that m is the mother of c and similarly for f as father.

We want a datalog program to generate all maternal ancestors

m-ancestor(C,P) :- m(C,P).

m-ancestor(C,P) :- m-ancestor(C,X) & m(X,P).

m-ancestor(C,P) :- m-ancestor(C,X) & f(X,P).

The interpretation we give to rules with the same predicate heads is an "or" operation.

Thus, to find all the maternal ancestors of joe, we use:

m-ancestor(joe,X)?

or

8

