
Open Source Basics: Definitions, Models, and Questions

Johndan Johnson-Eilola
Clarkson University
8 Clarkson Avenue
Potsdam, NY 12980

315.268.6488

johndan@clarkson.edu

ABSTRACT
In this paper, I will provide a basic overview of issues related to
the use of open source models for development and distribution of
computer documentation. The first section of the paper defines the
key relations among different “open” categories (ranging from
open standards to free software). The second section of the paper
argues for two different methods for implementing open source
models for computer documentation, one that offers increased
user input into documentation projects and another that works to
redefine how users and customers understand the importance and
value of documentation.

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]:Hardware/Software
Protection – Copyrights.

General Terms
Documentation, Economics, Legal Aspects, Management, Theory.

Keywords
Open Source software, free software, documentation, interface
design, professional status.

1. INTRODUCTION
Open approaches to software development have generated an

enormous amount of participation (and press) during the last
several year [1, 6, 7, 9, 10]. Numerous incarnations of the “open”
concept provide varying degrees of access to resources
traditionally held as closed: open source, open standard, open
framework, open participation, and more. Although “open” terms
are sometimes used loosely, understanding the specific meanings
of each is important because actual practices can vary wildly. For
example, Open Standards initiatives may foster a sense of
communal involvement in emerging standards. However, in some
isolated cases such movements can be used to hijack public
participation use. Conversely, companies that adopt common

Open Source licenses may find that they unwittingly lose
control over the direction their software or documentation is taken
by subsequent adopters.

This paper includes two primary sections: an initial set of
definitions and examples that points out key distinctions (and
discussions of the rationale and implications behind each for
general users and for technical communicators). In the second
section, I’ll attempt to frame some key overall ways that technical
communicators might take advantage of (and landmines they
might avoid) in considering open source projects (both
developing documentation for open source software and adopting
an open source model for some documentation projects).

Readers with a basic understanding of Open Source may
wish to skip directly to Section 3.

2. VARIATIONS ON A THEME:
DEFINITIONS AND RELATIONS
2.1 Introduction

One complexity to the Open Source movement has been the
debate over what, specifically, the term itself means. In some
instances, the gradations are so slight that they do not appear to
have significant effects on most users and developers. The debate
over “Open Source” versus “Free Software” between Eric
Raymond and Richard Stallman [10], for example, turns on what
seems like a subtle point (indeed, it almost sounds like a clichéd
image of how committee meetings can generate mountains from
molehills).

However, as participants in the debate attempt to make clear,
“open source” attempts to front the increased reliability that
results from large communities of users being given access to
source code (a benefit that relates to the Open Source dictum,
“with enough eyes, all bugs are shallow”) while “free software”
attempts to highlight how, in contemporary culture, software
frequently structures how people act and communicate. In this
respect, following the lead of theorists like Lawrence Lessig [5]
open source advocates such as Tony Stanco point out that in
online communities

[S]oftware is the functional equivalent to law in real
space, because it controls people, just like law does....
[it is] much more obedient and therefore dangerous in
the wrong hands. [8]

In other words, “free,” as Richard Stallman famously puts it,
should be thought of as ‘Free as in speech, not free as in beer”
[10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’02, October 20-23, 2002, Toronto, Ontario, Canada.
Copyright 2002 ACM 1-58113-543-2/02/0010…$5.00.

79

And if the Open Source versus Free Software debate includes
some potentially important distinctions, other distinctions within
this general area have larger implications for users and
developers, in some cases with themes from open source being
apparently highjacked reasons that seem to be at odds with much
of the movement’s overall goals.

Table 1. Key Open (and Related) Categories and Definitions

Term Key Aspects Major Names
Free

Software Richard Stallman

Open Source

users can copy and
redistribute

users can access

source code

users can modify and
redistribute code

Eric Raymond, Bruce
Perens

GPL

Free Software
Variation: Copyleft
(hacking copyright

law)

Richard Stallman

Open
Standards

interface specs
(protocols and

frameworks) publicly
available for use

IBM, Netscape,
Microsoft

Shared
Source

users allowed to see
source code on as
allowed by owners

Microsoft

Below, I’ll briefly describe the main characteristics of each
category before moving to the second (more important) section on
the value of some of these elements to people in the field of
computer documentation.

2.2 Free Software
Designed primarily by Richard Stallman, Free Software involves
four key rights inherent for users, developers, and reprogrammers
of software:

• The freedom to run the program, for any purpose
(freedom 0).

• The freedom to study how the program works, and
adapt it to your needs (freedom 1). Access to the source
code is a precondition for this.

• The freedom to redistribute copies so you can help your
neighbor (freedom 2).

• The freedom to improve the program, and release your
improvements to the public, so that the whole
community benefits. (freedom 3). Access to the source
code is a precondition for this. [2]

As Bruce Perens points out, Free Software has a relatively long
historical status: computer programs were not initially sold on the
open market, since no real market existed. Instead, programs were
simply shared among sites (at least in some cases) [7].

2.3 Open Source
A small group of Free Software developers concerned that

the term “free” was being misunderstood by both developers and
users: the term had been defined to include a long list of specific
provisions designed to allow modifications and redistributions by
users (see previous definition). But because “free” is commonly
understood as meaning, simply, “no cost”, software that did not
meet the Free Software definition might still be called “free”.

Developed by Eric Raymond and Bruce Perens, Open Source
software is sometimes called “a marketing program for free
software” [1]. For nearly all purposes, programs that meet Free
Software provisions also meet Open Source provisions. (The
debate surrounding the two terms still continues.)

2.4 GNU Public License
The GNU Public License (GPL) developed as a category within
the Free Software license. In Free Software, users retain the
ability to modify source code they’ve obtained under the Free
Software license, make modifications to the source code (to add
capabilities, for example), compile, and the redistribute the
resulting program under a new license (including proprietary
licenses). This use is completely within the original Free Software
license (cite:http://www.gnu.org/philosophy/categories.html#Non-
CopyleftedFreeSoftware).
The GPL provides a licensing maneuver that hacks copyright:
copyleft. Under the GPL license, all “improved” versions of
software must also be released under the GPL license.

2.5 Open Standards
Open Standards are protections for the right to implement
standards that are openly published. The Open Standards
themselves are described by a governing body, then published.
Individuals and corporations are then free to develop code that
instantiates or works with the published standard. For example,
basic HTML, as published by W3C, is an Open Standard; Internet
Explorer, Netscape Communicator, Dreamweaver, FrontPage,
Mozilla, Opera, and Galeon are all examples of programs
(specifically, the imbedded browsers or preview applications
within each) that implement support the HTML Open Standard.
Notably, this list of programs work from different licensing
models: Internet Explorer, for example, is a proprietary program
that’s freely available (but is not Open Sourced); Mozilla is
likewise free, but Open Source. Dreamweaver’s preview mode is
not free and is proprietary. Whether or not any specific approach
is preferable depends on personal politics, institutional affiliation,
and numerous other local and concrete factors.
Open Standards are considered useful to the extent that programs
and data from various organizations and individuals can
interoperate more effectively. If, for example, a Web page obeys a
specific version of HTML, different browsers can all display the
page correctly because they have access to the standard describing
how specific codes should be displayed on screen.

2.6 Shared Source
Shared source has generated debate in the Open Source
community because, at one level, it appears to offer similar
provisions as other variations of the Open/Free movement. But (as
with many of the debates within this context), the terms in the
license mean different things to different audiences. Although
“shared” might be read by some as synonymous as “free”, the

80

term actually means that the owners of the source code can offer
different groups of users differential access to view the source
code. That is, Shared Source is probably closer to a developers’
partnership than an open community. In Microsoft’s articulation
of Shared Source, was designed to help software developers better
understand the interactions of their own programmers with those
of another developer. Open Source (and other) opponents to
Shared Source point out that one goal of this license type is to
provide the original developer with more accurate debugging data,
since programmers from different companies can point to specific
lines of code that are causing errors [4, 6]

3. Open Source Models for Computer
Documentation
One might rightly ask why computer documentation professionals
would give two hoots about the Open Source movement. After all,
Open Source deals explicitly with source code rather than
documentation. And many programs distributed under various
open source variations are shockingly deficient in terms of
documentation (often including nothing but a README file that
covers program compilation and installation but not endues).
Open Source provides two very important opportunities for
technical communication, one more or less functional (with
important but relatively localized potential), the other
philosophical (but with a potentially wide-ranging set of
consequences for the profession).

3.1 Developing Open Source Documentation
The principle processes of Open Source map relatively well

to the documentation development process. Although many linux
programs come without professionally-designed, usable
documentation, there do existing hundreds of programs for which
free documentation has been developed by various users, shared
freely, modified, and posted to Websites. In many cases, software
originated by one writer is modified and reposted by subsequent
writers according to Open Source licenses. But while there are a
wealth of pieces of documentation available, most would benefit
significantly from the attention of someone trained in computer
documentation design. At the very least, the opportunity to
modify and then redistribute such documentation could provide
excellent learning opportunities for technical communication
students as class projects. At a more ambitious level, this activity
(and the others described in this section), if coordinated as a
larger effort by an organization like SIGDOC, IEEE PCS, or STC
(or a joint venture among these and similar organizations) would
provide an excellent opportunity for publicizing the importance of
technical communication to users.

Although to some extent computer program code operates
differently that computer documentation, many of those
differences are due to an artificial separation. For example, the
increasing overlap between interface design and online
documentation signals a tendency for documentation to overlap
extensively with computer code. WinHelp files, HTML and XML,
the design of software wizards and assistants all illustrate
instances in which documentation is itself source code. And
because computer interfaces themselves are often a primary
method by which users learn how a program functions, Open
Source software provides a key area into which technical
communicators might gain the ability to learn and demonstrate the
critical contributions that technical communication can make to

software, beyond traditional documentation: the concepts of
usability, communication theory and practice, audience, etc. can
provide important tools in improving user experiences. But while
technical communicators are often overlooked when it comes time
to design interfaces (in favor of programmers or graphic
designers, for example), Open Source software provides a natural
testing ground for the skills of technical communicators.

For example, many popular linux programs possess little or
no integrated online help. At a more immediate level, many
programs (often the same programs) possess extremely
rudimentary interfaces, or interfaces that appear streamlined but
that pose significant usability issues for many users in their
audience.

For example, one benefit of the linux image editing program
The Gimp is its extensive use of discrete windows to display
various controls and manipulation areas during image editing [3].
On launching the program on my own box, I’m greeted with the
set of windows shown in Figure 1.

Figure 1: Portion of Screen After Launching GIMP

Each of these windows or palettes can be individually

moved, resized, minimized, sent to other workspaces, etc. (I have
not even open an image file at this point.) Like many linux
applications, power users quickly develop efficient methods for
managing screen information and can rely on memorized
commands for moving screen information around to suit their
particular contexts and patterns of work.

Intermediate users, however, may find that this interface
lacks a coherent structure. For example, during editing sessions I
frequently discover that all of my control palettes are either off-
screen or hidden by other windows, leaving me with the set of
interface cues shown in Figure 2.

81

From a usability perspective, intermediate (let alone novice)
users are left with little clue about how what controls will let them
manipulate the image window. There are no toolbox buttons, no
menu headings or other hints about how to proceed.

Rhetorically speaking, this situation represents either a lack
of understanding about complex audiences (that is, that there
might be both expert and novice users who need support) or an
intentional effort to obfuscate program interface elements in order
to limit program use to power users.

Figure 2: Empty GIMP Document Window
Lacking Usability Hints

In either instance, this situation provides an example of a
program that someone with expertise in technical communication
could provide relatively minor tweaks in order to improve the
overall usability of a program for a wider range of audiences by
applying general technical communication and usability techniques.

For example, in the GIMP window above, users need to right-
click on the empty screen in order to call up a standard menu, a fact
that many intermediate users (and above) but not many novices will
know. Wouldn’t it make more sense to provide a small menu bar
even in small image windows? From a narrow audience perspective
(one in which programmers are writing primarily to other
programmers), no, since the menu would take up screen real estate.
But given the current rhetorical goals of linux development (at least
as stated by many in the linux community) to expand the community
of users from a small core of programmers and hackers to a more
mainstream desktop audience, providing additional cognitive
scaffolding in the interface would be a good thing. Indeed,
throughout GIMP (and with many other linux programs), there are
hundreds of interface elements that could be modified according to
standard principles of usability and communication in order to
improve the usability of the program.

Certainly numerous programs, in open source or out, possess
interfaces that could use the work of someone with a background in
communication and usability. In fact, Photoshop itself has a
notoriously steep learning curve. But because Adobe is not
distributed under any variations of Open Source, Photoshop cannot
be modified by end users, let alone redistributed. Under the Free
Software, GPL version of the license that covers GIMP, these
modifications could then be redistributed to other users.

Admittedly, the ability to edit source code is, in many cases,
not a core competency for technical communicators. But given the
number of technical communicators who work with one foot in
computer science, a coordinated effort at program redesign by the
discipline is not out of the question. And a single instance of
successful redesign, worked on by a core team of technical
communicators, could provide an important press opportunity for
making visible the importance of technical communication skills
(and an antidote to the recent spate of articles documenting difficult
to use software).

3.2 Relocating Value from Programming to
Communication
At a much more philosophical level, the open source movement
provides a paradoxical shift in public understanding about the
importance of programming: the ability to write computer code is
not always of fundamental value in the late capitalist marketplace. In
a sense, software is increasingly a commodity: in the Open Source
model, people do not pay for mass produced and distributed
software (although they do acknowledge the fact that it’s important).
Rather, they tend to value the ability to localize standard packages,
with programmers at places using open source software being paid
to customize applications to answer local needs.

Paradoxically, this movement does not necessarily act to
depreciate the skills of technical communicators, even though it
commonly does. As I mentioned earlier, documentation (and
effective interfaces) for Open Source programs is frequently paid
scant attention. But this situation exists only because we have not
yet fully understood and capitalized on the Open Source shift. As
many corporations have demonstrated, Open Source software
development does not negate capitalist profit (despite Microsoft’s
accusations). Instead, Open Source tends to change the location of
value: customers now value service organizations that solve
problems. Red Hat, for example, one of the most successful linux
distributors, generates much of its income (and mindshare) through
training and certification programs. And O’Reilly Press, an
extremely well know publisher of print books about linux (among
other things) generates income through the sales of print books that
are often available to users for free online. The movement to Open
Source, in this sense, acts to place primary value on communication
of one sort or another rather than on program function. The most
profitable areas of the Open Source community are not in the
development of Open Source software, but in the development of
support materials, customized product integrations, training centers
and materials, and certification processes.

This is precisely the niche that technical communication can
fill: by leveraging understanding of usability, information design,
learning theory, communication practices, and rhetorical theories,
technical communicators possess key traits that would allow them to
work within the Open Source movement, combining both Open
and customized (for-profit) services at the same time.

82

4. REFERENCES
[1] “Advocacy.” Open Source Initiative. Available at

http://www.opensource.org/advocacy/. Accessed
6/20/02.

[2] “The Free Software Definition.” The Free Software
Foundation. Available at
http://www.gnu.org/philosophy/free-sw.html. Accessed
6/24/02.

[3] GIMP. [Computer Software.]. Available at
http://www.gimp.org/. Accessed 6/24/02.

[4] “Information on Microsoft’s ‘Shared-Source’
Licensing.” Share-Source. Available at
http://www.shared-source.com/. Accessed 6/20/02.

[5] Lessig, Lawrence. The Future of Idea: The Fate of the
Commons in a Connected World. Random House, New
York, 2001.

[6] “Microsoft Expands Commitment to Open Standards
and Interoperability.” Microsoft Corp. Available at
http://www.microsoft.com/PressPass/press/2001/Jun01/
06-27CorelPR.asp. Accessed 6/24/02.

[7] Perens, Bruce. “The Open Source Definition.” In C.
Dibona, S Ockman, and M. Stone (Eds.) Open
Sources: Voices from the Open Source Revolution.
O’Relly Press, 1999.

[8] Stanco, Tony. “Information and Communication
Technologies for Development: Lessons Learned and
Directions for the Future.” Paper presented at the
World Bank’s InfoDev 2001 Symposium, December 6,
2001, Washington D.C. Available at
http://www.infodev.org/symposium2001/presentations/
stanco.html.

[9] Wheeler, D. “Open Source Software/Free Software
(OSS/FS) References.” Available at
http://www.dwheeler.com/oss_fs_refs.html. Accessed
6/20/02.

[10] “Why ‘Free Software’ is Better than ‘Open Source’.”
GNU. Available at
http://www.gnu.org/philosophy/free-software-for-
freedom. Accessed 6/24/02.

83

