
Evolution Patterns of Open-Source Software Systems and
Communities

Kumiyo Nakakojil'2'3yasuhiro Yarnamoto 2,4 Yoshiyuki Nishinaka 1 Kouichi Kishida 1 Yunwen Ye l's
1SRA Key Technology Laboratory ZGrad, School of Information Science, NAIS T

3-12 Yotsuya, Shinjuku, Tokyo, 160-0004, Japan
+81-3-3357-9011

3pRESTO, JST 4Japan Society for the Promotion of
{kumiyo, yxy) @is.aist-nara.ac.jp

ABSTRACT
Open-Source Sol~.-warc (OSS) development is regarded as a
successful model of cnenuraging "natural product evolution". To
understand how this "natural product evolution" happens, we have
conducted a case study of four typical OSS projects. Unlike most
previous studies on software evolution that focus on the evolution
of the system per se, our study takes a broader perspective: It
examines not only the evolution of OSS ystems, but also the
cvolution of the associated OSS communities, as well as the
relationship between the two types of evolution.

Through the case study, we have found that while collaborative
development within a community is the essential characteristic of
OSS, different collaboration models exist, and that the difference
in collaboration model results in different evolution patterns of
OSS systems and communities. To treat such differences
systematically, we propose to classify OSS into three types:
Exploration-Oriented, Utilio,.Oriented , and Service-Oriented.
Such a classification can provide guidance on the creation and
maintenance of sustainable OS5 development and communities.

Keywords
Open-Soume Software (OSS), softnvare evolution, Open-Source
Software community, case study

1. INTRODUCTION
Open-Source Soft'ware (OSS) refers to software systems that are
flee to use and whose source code is fully accessible to anyone
who is interested. Most OSS systems start out with a develoPer
who wants to solve his or her own particular problem and makes
the solution (system) available to others for free. Because it is
free, it often attracts many users who have a similar problem, and
because of the free access of source code, some interested users
become co-developers by extending or improving the initial
system. Together with the original developer, users and en-
developers create a collaborative OSS communiW around the
system. Without such OSS communities, OSS projects arc not
likely to be successful.

Most OSS systvms arc not necessarily carefully designed in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page_ To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWPSE 2002 Orlando Florida
Copyright ACM 2002 1-58113-545 -9/02/05...$5.00

8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
+81-743-72-5381

Science s University of Colorado at Boulder
{nisinaka, k2, ye}@sra.co.jp

advance. They evolve in response to the needs of users in the OSS
community, and the evolution is carried out by contributing
(co-)developers of the same community. Although the evolution
of an OSS system is not well planned, "giving users of a product
access to its source code and the right to create derivative works
allows them to help themselves, and encourages natural product
evolution as well as preplauned product design [14]."

To understand how this "natural product evolution" happens in
OSS systems, we have conducted a case study of four typical OSS
projects. Unlike most previous studies [1, 7, 9] on software
evolution that focus on the evolution of the system per se, such as
the growth of size, the decay of architecture and design, and the
change of defect density, our study takes a broader perspective: It
examines not only the evolution of OSS systems, but also the
evolution of the associated OSS communities, as well as the
relationship between the two types of evolution.

Although an OSS project might have a leader (often the one who
initiates the project), the leader neither has a grand plan for the
system at the beginning, nor dictates the evolution of the system.
It is the whole OSS community that collaboratively drives, as both
users and developers, the evolution of the system. Therefore, a
full understanding of the evolution of an OSS system cannot be
complete without understonding the evolution of the OSS
community and its role in driving the evolution of the system.

This paper reports the case study in which we analyze and
compare fot~ diffeI~at OSS projects and communities that our
company, SRA Inc., is involved. Through the case study, we have
found that while collaborative development within a community is
the essential characteristic of OS5, different collaboration models
exist, and that the difference in collaboration model results in
different evolution patterns of OSS systems and communities. To
treat such differences systematically, we propose to classify OSS
into thr~ types: Exploration-Oriented, Utility-Oriented, and
Service-Oriented. Such a classification can provide guidance on
the creation and maintenance of sustainable OSS development and
communities.

In what follows, we first briefly describe the background of the
case study, followed by an overview of the four projects. We then
compare the four projects and analyze their differences in
collaboration model and evolution pattern of the system and
community. Based on the analysis, we identify three types of OSS
projects. The paper concludes with a discussion of how the
identification of the three O5S types can help us better understand
the evolution of OSS systems and communities.

2. BACKGROUND OF THE CASE STUDY
In January 2001, the Information technology Promotion Agency
(IPA) of the Ministry of Economy, Trade, and Industry (METI) of
Japan, decided to conduct a survey on the current status of OSS

76

development in the Japanese software industry. SRA was awarded
the grant to conduct the survey, which identified different types of
OSS projects, and compared existing industrial and governmental
support for OSS development in different countries. SRA is a
leading company in the open source movement, and has been
supporting the activities of the Free Software Foundation (FSF)
since 1987. In addition, SRA has carried out a variety of open
source software development projects within its Open Source
Business Division. This paper is based on a part of the findings
from the survey, which is a case study over four different OSS
development projects conducted within SRA.

The four projects we have studied are:
I. the GNUWingnut project, which provides support for a

number of GNU software applications, such as GCC and
Emacs, for Japanese companies that need GNU software
ported into their hardware platforms;

2. the Linux Support project, which offers support for Linux
users as a master System Integration distributor;

3. the SRA-PostgreSQL project, which supports Japanese
customers who use the PostgreSQL database; and

4. the .Inn project, which is a 3D graphic and multimedia library
for Smalltalk and Java.

A survey was conducted by interviewing the project members of
each of the four O$S projects. During the interview, we asked
questions including:
• what open-source soft'ware they are dealing with;
• how the development of the open-source software has been

done;
• what communication media the developers use in the

development of the sof'cware;
• how they do business with the open-source software; and
• what benefit they see by doing business with open-source

sol, ware.
Instead of obtaining simple answers, we ask those questions as a
way of starting a series of discussions. In addition to the
interviews, we examined their mailing-list archives and
quantitative data related to particular aspects when necessary.

Note that the open-source software we describe in this paper
reflects the views of those with whom we conducted the study.
The views and opinions expressed by the project members who
were interviewed may not be consistent with that of the core
members of each project. For instance, we have interviewed the
SRA-PostgreSQL project members at our company, but we have
not interviewed with the PostgreSQL core development team
members. This case study is to report how the OSS development
project members at a for-profit company view their OSS
development, and how different types of OSS development results
in different types of business projects.

3. THE FOUR PROJECTS
This section describes the four projects in detail.

3.1 The GNUWingnut Project
As the name suggests, this project deals with GNU
(http://www.gnu.org/) software developed by FSF (Free Sofrware
Foundation). The GNUWingnut project helps clients import GNU
software programs onto their particular hardware platforms. GNU
is a project thatrries to develop a "free" UNIX operating system,
organized by Richard Stallman at FSF. For Stallmah and FSF,
programs are "scientific knowledge to be shared among mankind'"
[6]. That is, for them, set,rare is knowledge developed by

"highly trained professional programmers" and therefore to be
shared among human beings in the same way as the knowledge
medical doctors develop is shared through research papers and
books. It is this spirit that makes their software free. They have
been using the term "free" not to mean that the software is free of
charge but the source code is free to view, modify, and distribute
under the license called GPL (GNU Public Licex~e) with the
ownership notion called copy-left.

It is not our purpose here to describe GNU and FSF in detail,
however, several interesting characteristics are worth to mention.
Although it may not be explicitly stated, this view of programs as
scientific knowledge has developed a mlturc where open-source
systems need to be of very high quality; they want to develop the
"'correct" and "best" system for implementing a piece of
functionality. Because it is to be good and to be shared among
mankind, centralized control has been exercised. GNU software
development teams observe strict coding rules and format
guidelines [5] to make their software to be easily shared among
mankind. Only one core version of the software is allowed and
variations and alternatives need to he integrated within the core
version. All bugs found need to be reported so that the core
members can fix them. Overall, control is very much centralized.

The main task of the GNUWingnut project is to help clients port
GNU programs into their target machines. A typical case is that a
hardware vendor needs to have GNU Emaes and GCC to run on
their super-computer operating systems. This involves two types
of work. The first type of work is to develop patch programs for
the clients. Although the source code is available, many GNU
programs are very large and complex and require substantial
knowledge and expertise to understand. The GNUWingnut project
members offer such expertise, enabling clients to develop patch
programs faster and better.

The second type of work, which is more interesting and possibly
unique to GNU-related software devetopment, is to help clients
increase the quality of patches by revising and refining them so
that they can be reported back to the GNU core development team.
The clients need such help from the GNUWingnut project for the
following three reasons.

First, as mentioned above, a GNU project wants to have a single
version for a particular program and all bug fixes and updates
need to be reported back in to the core development team. For
instance, when a super-computer vendor develops a patch of C-CC
for their super-computar operating system, this company needs to
have this patch reported back to the GCC core development team
and to be incorporated into the core version; otherwise they have
to develop a patch for every subsequent release of GCC,

Second, as also noted above, GNU requires fed-back programs
strictly adhere to GNU guidelines for ceding, formatting and
documenting. Although most of these guidelines can be enforced
by using appropriate "modes" in Ernacs, it still requires skills in
observing these guidelines.

Third, a "cultural barrier" for Japanese programmers keeps them
from directly communicating with the GNU core members
through mailing-lists. Many programmers in Japan view the GNU
core team as a group of super-prograrmners with highty respected
skills, and want to keep a "respectful distance" from them. Some
of the GNUWingnut project members have been closely working
with the GNU core members for the last decade, and they serve as
the intermediary between the clients and GNU core members.

7 7

3.2 The Linux Support Project
The Linux Support project at SRA provides user support for the
Linux operating system, excluding the Linux kernel. We make
this distinction because, similar to GNU, the Linux kernel
development is under centralized control, while the remainder of
Linux has been developed in the bazaar style [16] with
decentralized control. The Linux support project supports the
bazaar model, and accordingly in this paper when we refer to
Linux we are referring to the portions of Linux outside the kernel
unless specifically noted.

Contrary to the GNU programs, multiple versions of programa for
the same functionality exist in Linux No official centralized
repositories have been developed for Linux OS peripheral tools,
such as device and printer drivers. Each developer puts their
programs on the Web, and users rely on Web search engines to
find the needed program. Because multiple versions exist all over
the world (i.e., the World Wide Web), directory services are
necessary to find the needed programs. Furthermore, there are
programs that are not compatible with each other. Distribution
packages have been developed to help users find programs that
are compatible with each other.

O'Rcilly specifies four types of business models to deal withOSS
[13]: (1) Support Seller, (2) Loss Leader, (3) Widget Frosting and
(4) Accessorizing The Linttx Support project at SRA can be
characterized as Support Sell~ that helps customers identify and
solve problema in the course of using Linux. A typical task is to
help clients find appropriate distribution packages and to
customize sottware for their needs. Linux Support Project
members are also asked to find up-to-date information on security
and bug reports related to their clients' Linux programs, which are
scattered all over the Web.

Therefore, members of the L inux Support project are required to
be able to find the needed information and to read and understand
source code produced by others. For instance, if a bug is fotmd in
a Linux program, a typical process taken by a project member is
as follows:

1. Read the newest version of the source code to see if the bug is
fixed.

2. If not, read the released version of the source code to see if the
bug is fixed.

3. If not, cheek a bug tracking report produced by the distributor
if it reports the bug.

4. If not, check related mailing lists to see if the bug has been
reported.

5. If not, try to find Web pages that report similar bugs.

When they find a newly-fixed program, they typically use the d/ff
command to see how the bug is fixed, and apply the changes to
the existing source code.

Surprisingly, project members develop patches for their customers
and fix bugs, but they do not necessarily contribute the patches
back to the community. The leader of the project explains that the
customers do not care about version updates and they prefer to
stay with the current version of the system as long as the system is
working, even if new versions are available. This is very different
from the GNUWingnut project in which it is critical that the
patches developed and used at a customers" site get incorporated
into the core version because otherwise they would be IeR behind.
Once ~acorporated, their drivers and interfaces will be token care
of by the GNU core development team.

3.3 The SRA-PostgreSQL Project
The SRA-PoatgreSQL project deals with the PostgreSQL database
(ht-tp://www.PostgreSQLorg/), which is an open source system
originally developed as a research prototype. The system has
evolved and is now comparable to large-scale commercial
database systems.

Because robustness is highly desired in database systems,
PostgrcSQL is strictly controlled by the core development team
and the major development team. Decisions about the
development of PostgreSQL arc made democratically in the
development team that communicate through mailing lists. Most
discussions in the mailing lists are not concerned with the
implementation and source code, but with specifications of new
features and requirements, because for a database system, any
change in specification may affect the overall performance and
quality of the system.

The primary task of the SRA-PostgreSQL project has bccn
internationalization. This has been done in four steps: first, the
SRA-PostgreSQL project members have locally developed
patches to deal with the Japanese language. Second, they have
extendcd the patches so that they are able to deal with any two-
byte code languages. Third, the patches have been incorporated in
the core version of the PostgreSQL system. Finally, the now-
internationalized PostgreSQL has become the standard
distribution version.

Because of the contribution made by the SRA-PostgreSQL project
team to the large PostgroSQL community, the leader of the SRA-
PostgreSQL project has become a member of the major
development team.

in addition to internationalization, the SRA-PostgreSQL project
helps Japanese clients to port the system to multiple platforms,
and conducts benchmark test. The project also serves as the Japan
center of PostgreSQL. providing a Japanese ftp site for bug Fixes
and patches. Many Japanese users used to have trouble finding
necessary information because most information regarding
PostgreSQL is written in English. The SRA-PostgroSQL project
helps them by translating English docuroents into Japanese.

For PostgreSQL, the biggest advantage of being open-source is
that people can find bugs more quickly--bugs become shallow
with enough eyeballs [16]. Most users in the PostgreSQL
community contribute by testing and finding bugs through
examining the source code, rather than writing code,

Another interesting aspect of the PostgrcSQL project comes from
the fact that the software is a database system. When reporting a
bug, it is often necessary to use a specific set of data to reproduce
the bug, becausewithout the data it is very difficult for developers
to understand what the problem is and to debug However, such
data is often proprietary and cannot be made public. Therefore,
customers often ask the SRA-PostgreSQL project members to
debug it, ensuring that their data are available only to the project
members rather than the whole PostgreSQL community. The
SRA-PostgroSQL project members then develop patches and send
them to the PostgreSQL core development team.

3.4 The Jun Project
The Jun project at SRA develops and distributes the Jun library
(http:l/www.sra.eo.jp/peoplelaoki/junO, a Smalltalk and Java
library for 3D objects and multimedia data handling Different
from the above three projects, this project deals with the software
that has been developed in-house. We have reported how the Jun

7 8

library has evolved over the last five years and how centralized
decision making and continuous evolution has been achieved [I].

As reported in ill, not only the source code afJun, but also its
underlying objcct model has been used by the Jun community. Jun
has served as a reference model in the development of 3D objects
and multimedia data handling. Jun's evolution differs from other
open-source systems. Instead of a wide community of
programmers each contributing a small part, almost all of Jun is
developed by a small group of three to five programmers. The
development process is strictly controlled by the single project
leader, who does both quality control and decision making in
terms of which directions the project should evolve. Although the
community does not contribute much source code, it provides
feedback, fcamrc requests and bug notices.

The business model of the Jun library is to develop software
applications for customers with Jun. Although Jun is an open
sourcc library and is freely available ['or other dcvclopment
organizations and developers, the library has become quite large,
creating a high learning curve for understanding and applying it.
As its original dcvclopcr, the Jun project tcaro has an obvious
advamagc over other developers. The project members have been
asked to develop research ~pplication systems using Jun, and to
offer consultation on the use of Jun as well as the use of
underlying models.

4. ANALYSIS
This section compares and analyzes the four projects, using a
gencml framework we have developed for understanding OSS
systems and communities.

4.1 The Genera l F r a m e w o r k
As stressed in Section 1, to fully understand the nature of
evolution in OSS projects, we have to examine both the system
and the community, which is the driving force of the evolution.
Thercforc, our general framework for analyzing OSS projects is
based on the roles that OSS community rncmbms play in the
community, and the structure of the community def'med by the
collaborative relationship among those different roles.

4.1.1 Roles of Community Members
On¢ distinct feature of an OSS project, as compared to the
commercial soRwarc development, is that members of the OSS
project assume certain roles by themselves according to their
personal interest in the project, rather than being assigned a task
by someone else A rncmber may have one of the foUowing eight
roles (Figure 1).

Passive User. Passive Users just use the system in the same
way as most of us use commercial soRwarc; they are attracted to
OSS mainly due to its high quality and the potential of being
changed when needed.

Reader. Readers arc active users of the system; they not only
use the system, but also try to understand how the system works
by reading the source code. Readers are like peer reviewers in
traditional software development organizations.

Bug Reporter. BugRcportcrs discover and report bugs; they do
not fix the bugs themselves, and they may not mad souse code
either. They assume the same role as rosters of the traditional
software development moclel.

Bug Fixer. Bug Fixers fix the bug that is either discovered by
themselves or reported by Bug Reporters. Bug Fixers have to

read and understand a small portion of the source code of the
system where the bug occurs.

Peripheral Developer. Peripheral Developers contribute
occasionally new functionality or features to the existing system.
Their conlribution is irregular, and the period of involvement is
short and sporadic.

Active Developer. Active Developers regularly contribute new
features and fix bugs; they arc one of the major development
forges of OSS systems.

Core Member, Core Members arc responsible for guiding and
coordinating the development e l an OSS project. Core M embers
are those people who haw been involved with the project for a
relative long time and have made significant conllibutions to the
devvlopmcnt and evolution of the system. In some OSS
communities, they arc aJso called Maintainers.

Project Leader. Project Leader is often the person who has
initiated the project. He or she is responsible for the vision and
overall dircction of the project.

Not all of Lhe eight types of roles exist in all OSS communities,
and the percentage of each type varies. Each OSS community may
have different names for the above roles. For the sake of
comparison, we will use above names throughout the paper.

4.1.2 Community Structure
Although a strict hierarchical structure does not exist in OSS
communities, the structure of OSS communities is not completely
flat. The influenc~-s that members have on the systcm and the
community arc differcm depending on what role they play. Figure
1 depicts the general layered structure of OSS communities,
where the role closer to the" center has a larger influence. In other
words, a Project Leader has a larger influence than a Core
Mcrnber, who in turn has a larger influence than an Active
Developer, and so on. Passive Users haw the least influence, but
they still play an important role in the whole community.
Although they do not directly contribute to the development of the
system technically, their very existence contribmes socially and
psychologically by attracting and motivating other more active
members, to whom a large population of users is the utmost
reward and flattery of their hard work j'l 6].

The roles and the/r associated influences in OSS commtmities arc
not associated with any attributes (such as age, title, etc.) of a
member; instead, they can only be earned through contributions to
the community. Roles arc not fixed either; each member can play
a larger role if they aspire and make appropriate con¢ibutions.

It is important to maintain a balanced composition of all the
different roles in a corrtmunity, otherwise an OSS community is
not sustainable [12]. At one extr~ne, if all the mcinbers arc
Passive Users, the OSS system never evolv,'s. At the other
extreme, i f all the members arc Core Members, i t is very difficult
to coordinate all the development efforts and the further evolution
of the system is also unsustainable.

Each OSS community has a unique structure depending on the
nature of the system and its member population. The structure of
an OSS community differs at the percentage of each role in the
whole community. Generally speaking, most members are Passive
Users. For example, about 99% of people who use Apache are
Passive l_kcrs. The perocntage drops sharply from Readers to
Core Members. Most open s o u r c e software is contributed only by
a small number of developers [12, 14].

79

\

/
/

Figure 1: General Structure

4.2 Roles and Structures of the Four OSS
Communities

This section analyzes the roles and structures of the four OSS
communities we have sPadied according to the general framework.
Except for the Jun project that was initiated in SRA, all the other
three projects are a portion of larger OSS commtmitiea, therefore,
our analysis will be aligned with the whole large communities
with special focus on the roles that SRA people play.

Most GNU systems, represented by GCC and Emacs, have a
Project Leader who is often the person who initiates the system. In
a few GNU system.s, Project Leaders might be helped by several
Core Members. The Project Leader makes moat of the decisions
about the development of the systems. Although all the other
members are free to contribute and providing feedback, it is up to
the Project Leader to decide which eontributinn should be
included and which feedback should be addr~sed. Due to the
limitation of available time, the Project Leader is not able to deal
with art the contributions and feedback, many of which go
unnoticed. Therefore, Active Developers, whose capability is well
regarded and trusted by the Project Leader as well as the
community, and whose number is not very large, not only
contribute their own code but also play an intermediary role of (1)
improving the code contributed by Peripheral Developers and Bug
Fixers and (2) recommending the code to the Project Leader for
their incorporation into the core version. Members of the
GNUWingnut project are mainly Active Developers in the whole
GNU community, and they mediate the communication from less
recognized contributing members to the Project Leader.

Because GNU systems are meant to be "scientific knowledge to
be shared among mankind" and they are developed by highly
respected expert programmers, a large percentage of Readers exist
in the GNU community. They learn programming skills and
knowledge by reading the freely accessible source code. At the
same time, they are also acting as peer reviewers to ensure the
quality of the system.

The whole Linu~ community has one Project Leader who is Linus
Torvalds, and has a few Core Members who are responsible for
the development of subsystems. It also has many Active
Developers who me working independently on subtasks, such as
specific device drivers. However, there are far more Passive Users

of an OSS Community

who do not care abom the source code nor be able to understand
the code. This breeds the need of supporting those Passive Users.
Members of the Linux Support project at SKA are Peripheral
Developers, Bug Fixers, and Readers. They understand the code
and are able to find a fix for the bugs, or fix the bugs by
themselves when the bugs are eported by customers who are
Passive Users.

PostgreSQL does not have a single Project Leader. Instead, it has
six Core Members who communicate with each other through a
dedicated mailing list to discuss and decide the direction of the
system. The inclusion of a new feature must be sponsored by one
Core Member and voted by all Core Members. The community
also has about 30 Active Developers (major development team).
The programs developed by Active Developers exist as patches,
and are finally incorporated into the core version only after they
are approved by the Core Members. Most community members
are Passive Users and Bug Reporters. Few Readers exist. The
population of Bug Fixers is quite low too. The leader of the SRA-
PostgreSQL project is an Active Developer, and the other project
members work with the leader as Periphersl Developers.

The Jun community has a Project Leader who is an SRA
employee. Several other SRA ©roployees work together with him
as Core Members. All the development is conducted in SRA.
Because public version is released after rigorous internal tests,
few Bug Reporters exist in the community. Most members are
Passive Users. A few members are Readers who study Jun
thoroughly and use it as a reference model to create a similar
system in another language [1].

4.3 Evolution of Systems and Communities
After having defined the roles and structures of the four OSS
communities according to the general framework, we are ready to
analyze the evolution patterns of the systems and the communities,
as well as their mutual dependence.

4.3.1 Evolution of the Systems
Because each of the four OSS projects has different objectives,
their evolutionary patterns also diff~T. Figure 2 gives a schematic
picture of how evolution takes place in each project.

GNU aims to have a single, clean, nice, well-written version of
implementation for a single piece of functionality. Therefore,

8 0

GNU Wiugnut
patch C

o "

,',,cd,,a:+..~)

~...patc,h

)4 Peedbaek

(

incorporate
(

P o s t g r e S Q L

L i n u x patch..(

(

.." ...
() ' t i pora le

N

d

.pntc.h

released " ~

J u n ~
}!ev+. ~'N

Figure 2: Evolutionary Patterns of the Four Projects

leSl
v e r s i n n $

when other people develop their own patches, the patches are
distributed only when they are incorporated into the core version.

In Linux, on the other hand, there is much less motivation and
encouragement for contributing back the developed patches, as we
have discussed in Section 3.2. Multiple implementations for the
same functionality are allowed. Therefore, many branches
evolved from a single program may exist.

In PostgreSQL, as new requirements emerge, Active Developers
will organize a team to implement them, in a similar way as the
SRA-PostgreSQL team that implements the internationalization
part. However, these new implementation will exist for a relative
long time as patches, and are ificorporated into the core version
only after they are approved by the Core Members.

Jun evolves also as a singie-version tree. As is true of many OSS
development projects, there are many branches of test versions
created for internal usage [18]. When the Project Leader decides
that the system has been sufficiently teated, the tested version is
released as a public version. In the case of Jun, every two to four
internal versions are released as public.

4.3.2 Evolution of the Communities
The evolution of an OSS community is brought about by the role
changes of its members. As community members change the roles
they play in the community, they also change the social dynamics,
and reshape the structure, of the community.

Unlike a project member in a software company whose role is
determined by the project leader and remains unchanged for a
long time until the member is promoted or leaves, the role that an
OSS member plays in the community might he in a constant
change depending on how much the member wants to get
involved in the whole community. The role is not pro-assigned,
and is assumed by the member as he or she interacts with the
other members. An aspiring and determined member can become
a Core Member through the following path.

New members are attracted to an OSS community because the
system can solve one of their own problems. As Michael Tiemann
put it, the depth and richness of good OSS systems often drives
motivated members to want to learn more, to read the system [17].
The new members now migrate from Passive Users to Readers.
As they gain more understanding of the system, they are able to
fix the bugs that are either encountered by themselves or reported
by others. They may also want to add a new twist to the system to

make the system more powerful and more suitable for their own
task. As their developed programs are made publicly available to
other community member, their roles as Bug F i x ~ and
Peripheral Developers arc recognized and established in the whole
community. The more contribution they make, the higher
recognition they cam, and finally, they will make into the highly-
selected inner circle of Core Members.

The above path describes an abstract and idealized model of role
changes of aspiring members, which is common in all the four
OSS projects. Not all members want to and will become Core
Members. Some are always Passive Users, and some stop in the
middle. Most of the users served by the four projects at SRA
remain Passive Users. Members of the GNUWingnut project and
the leader of the SRA-PostgreSQL project have become Active
Developers due to their long-term contributions to their respective
communities. Members of the Linux Support project at SRA
remain to be Peripheral Developers because they have not
contributed too much back to the whole community. Because all
the development of Jun is conducted in SPA by the Project
Leader and Core Members, the evolution of the community is
limited to the outside 3 layers of Figure I: from Passive Users to
Readers to Bug Reporters.

The evolution of an OSS community is thus determined by two
factors: the existence of motivated members who aspire to play
roles with larger influence, and the social mechanism of the
community that encourages and enables such individual role
changes. This is consistent with the community-based learning
theory called Legitimate Peripheral Participation (LPP) [10]. In
the LPP theory, a community of profassion~ls evolves by
reproducing itself when peripheral new members (i.e. apprentices)
become fully qualified members (i.e. masters). The process of
becoming a master is a process of learning. In the path from a
peripheral member (Passive Users in OSS communities) to a full
member (respected developers), the community member acquires
the skills and knowledge embodied in the cornn~nity by
interacting with master members (reading their cedes and aaking
them questions about OSS systems) and practicing authentic yet
small tasks (fixing bugs and developing real programs).

Free access to source code grants new members of an OSS
community (1) the legitimate access to expertise of mature
software dev©lopment practice embodied in the system, and (2)
the opportunity of working together with master developers. At

81

first, new members learn by engaging, peripherally, in small and
easy tasks, such as fixing a bug, writing a device driver. As they
become more competent and undertake mote difficult tasks, they
move gradually toward the center of the community and
eventually establish their identities as masters in the community.

The LPP theory provides one explanation of what motivates
people to get involved in OSS development--because they want
to [cam, and guides us how to design OSS communities that
encourage and enable such learning to take place. Individual
learning efforts that take place amid the interactions of the
community members lead to the change of the role and the
influence of that individual member, and thus the change of the
whole community.

4.3.3 The Co-Evolution of Systems and Communities
For an OSS system to have a sustainable development, the system
and the community must co-evolve. A large base of voluntarily
contributing members is one of the most important success factors
of OSS systems. As common in all the four studied projects, the
evolution of an OSS community is effected by the contributions
made by its aspiring and motivated members. Szch contributions
not only transform the role and influence of their contributors in
the community and thus evolve the whole community, but also are

• the sources of the evolution of the system. The opposite is also
raze. Any modification, improvement, and extension made to an
OSS system--whether it is a bug fix, a bug report, or a patch--not
only evolves the system itself but also redefines the role ofthnse
contributing members and thus changes the social dynamics of the
OSS community. For example, the leader of the SRA-PostgreSQL
project has earned his Active Developer status by continual
contributions, including the internationalization of the system.

Without new members aspiring to become a Core Member
through continuous contributions to the system and the
community, the development of the system will stop at the day
when some of the original Core Members decide to leave the
community or simply stop contributing their free time, energy,
knowledge, and services any more due to some reason. Because
members participate in the OSS development voluntarily, such a
danger always exists. GIMP (Gnu Image Manipulation Program at
hrtp://www.ghnp.org/) is such an example. When the original two
creators, Peter Mattis and Spencer Kimball, left college to take
jobs, they cut their tie with GIMP because they thought they had
done their services to the OSS community and wanted to move
beyond [8]. Because almost the whole system (95%-98%,
estimated by Kimball) was developed by the two developers and
at that time there was not a GIMP developer community to pick
up immediately where the two leit, the system stayed incomplete
for more than a year. The development was resumed later when a
community was finally formed.

Because the evolution of OSS communities and the evolution of
OSS systems arc mutually dependent, it is essential to the long-
term success of OSS development that enough atlention should be
paid to the creation and maintenance of a dynamic and self-
reproducing OSS communities. Project Leaders and Core
Members of an existing OSS community should not only focus on
the evolution of the OSS system itself, but also strive to create an
environment and culture that fosters the sense ofbelongingness to
the community and mechanisms that encourage new members to
move toward the center of the OSS community through continual
contributions.

5. THREE TYPES OF OSS PROJECTS
Based on our case study and available research literature on OSS
development and evolution, we have found that at least three
different types of OSS projects exist. According to its primary
goal, an OSS project can be Exploration-Oriented, Ulz'lily-
Oriented, or Service-Oriented.

5.1.1 Exploration-Oriented OSS
This type of OSS, represented by GNU software and the Jm
library, aims at pushing the frontline of software development
collectively through the sharing of innovations embedded in freely
shared OSS systems. This is very much similar to the culture of
scientific research community in which scientific results are
shared through conferences and journals for peer justification,
mutual inspkation, and continued development [2]. In the world
of software, source code, which is the embodiment of its
developer's understanding of the real world or innovative ways of
changing and designing the world through soft-ware systems, is the
scientific results to be shared. Due to its free access, it can spark
the ideas of other developers so that something new may grow
that otherwise would not have been born, and it enables others to
go further by stepping on the shoulders of the previous developer
through reusing the open solace code [3]. For example, the Jun
library represents its original developer Atsushi Aoki's unique
understanding and perspective on how to model and handle 3D
objects in computer displays. This library has inspired the
development of several advanced research applications that
directly reuse the library, as well as a new 3D library that uses the
implicit model underlying Jun as the reference model [1].
Similarly, Richard Staliman started the GNU development as a
way of sharing his in,sights in writing good programs with others.

Due to the epistemic nature of this OSS type, the quality
requirements are often very high. Once the system is released
publicly, it becomes a learning resource for thousands of software
developers. Therefore, this type of software must be developed
and maintained by expert programmers, such as Project Leaders,
who often are the original developers and keep a fight control over
the system in order to maintain the integrity of the system so that
it reflects its original design goal. Contributions made by the
community at large exist as feedback and are incorporated only if
they are consistent with the ideas of the Project Leader (Figtae 2a).
Most community members collaborate with the Project Leader as
reviewers and testers, who occasionally provide feedback.

Contrary to Eric Raymond's classification [16], the control style
of this OSS type is more close to the Cathedral style than to the
Bazaar style. The success of such OSS projects depends greatly
on the vision and leadership of the Project Leader. However,
when the vision of the Project Leader conflicts with the needs of
the majority of the OSS community members, forking might
happen. A new OSS project and community will be spun off the
original one and embark on a similar but different project. Two
typical examples are he spin-off of EGCS from C_rCC, and
XEmaes from Emacs.

5.1.2 Utility-Oriented OSS
This type of OSS, represented by the Linux operating system
(excluding the Linux kernel, which is Exploration-Oriented), aims
at filling a void in functionality. Most of such OSS systems
consist of many relatively independent OSS programs, such as the
device drivers in ~te Linux operation system, and those OSS
programs are developed because the original developers cannot
find an existing program that fulfills their needs completely.

8 2

Rather than waidng for others m provide the needed functionality,
capable software developers decide to develop their own systems
and put it on the web for others to shale.

As typified in the process model of the Linux Support project at
SRA (Section 3.2), ~w OSS programs in Utility-Oriented OSS
projects are completely developed from scratch. Most developers
search the lntemet for a partial solution and then modify it to their
own needs. Their primary concern is not to use the source code as
a way of scientific exploration as the Exploration-Oriented OSS
developers do, but to create a program that can solve their
personal needs, or scratching their personal itch [16]. Because the
development is motivated by an, often emergent, practical need,
timeliness is of essential importance. Moreover, because the
development is driven by an individual need, developers are
concerned with developing an operational system rather than
delivering a refined solution as in the Exploration-Oriented type.

As the program is released for public sharing, other users who
have a similar problem will pick it up, either using it as it is or
modifying it further. As we have discussed in Section 3.2 in the
context of the Linux Support project, the original developers am
not very much concerned if they receive feedback or improvement
from potential users, as long as the current program works to their
satisfaction. This leads to the proliferation of programs that have
similar utility. This type of OSS software development is a typical
bazaar type software development. No centralized control exists.
Unlike the Exploration-Oriented OSS in which forking is rather
ram and the evolution of the system takes place in the form of
improving the original system (Figure 2a), Utility-Oriented OSS
has a lot of forks, evolving in the form of developing new
programs by reusing and modifying existing programs rather than
replacing the old programs with the new ones (Figure 2c). This
gives to the rise of multiple, often incompatible programs.
Programs that implement the similar functionality compete with
each other and evolve simultaneously, but the implementation that
wins the most support in the community will finally excel and
eliminate other competing versions. This evolution pattern can be
called as the tournament style

One OSS program of the Utility-Oriented OSS itself may not have
art independent community associated with it. Instead, it exists
within the larger OSS community of the system ofwhich the OSS
program is a part. For example, many Linex device driver
developers are a part of the larger Linux community. From the
perspective of the larger OSS community, those developers of
OSS programs are Peripheral Developers. Because most such
developers only want to develop a program for their own
particular need, they remain to be Peripheral Developers.

Because many alternatives and different versions for a piece of
functionality exist, distribution packages are necessary to identify
a typical sot of programs chosen from a number of available
alternative programs. Passive Users who just vtent to use the
system need Readers and Peripheral Developers, who are able to
match the unique needs of Passive Users to the right system, to
help them choose the right configuration.

5.1.3 Service-Oriented OSS
This type of OSS, represented by the PostgreSQL system and the
Apache Server [12], aims at providing stable and robust services
to all the stakeholders of OSS systems. We use the term
stakeholder to refer to both the member of the OSS community
who uses the system and the end-user whose work relies on the
system developed by OSS community members with the OSS

system. For elarnple, the stakeholders of PnstgreSQL hclude
PostgreSQL users and the customers of application database
systems developed with PostgreSQL.

In a Service-Oriented OSS system, because the population of
stakeholders is much larger than that of the OSS community, any
changes made to the system have to be carefully considered so
that they do not disrupt its provided services on which many end-
users rely on. Therefore. Service-Oriented OSS is usually very
conservative against evolutionary and rapid changes.

in accordance with its conservative nature, the control style of
Service-Oriented OSS is neither Cathedral-like nor Bazaar-like.
Although the Cathedral style has a tight control over the system, it
is often controlled by one Project Leader, whose creative idea
may not reflect the best interest of all the stakeholders. On the
other hand, the Bazaar style encourages too many rapid changes
to provide stable services. As we can see in the PostgreSQL
community, Service-Oriented OSS is often collectively controlled
by a group of Core Members, and there is no single Project
Leader, Any changes are subject to debate in the group and only
the changes that won the majority of the group arc incorporated.
We call this kind of control the Council style.

Although the control over the development of the OSS system is
still centralized in the Council style, it is not controlled by any
individual person. The Council is the assembly of the Core
Members, who earn their rights by long-time devotion and
contributions to the OSS community. Furthermore, the
membership of the Council is not fixed. Most OSS communities
of this type have a mechanism of accepting new council members
whose contribution and competence is well recognized and who is
trusted by community members.

Most members of Service-Oriented OSS communities exist as
Passive Users, with some of them may become Bug Reporters and
Bug Fixers as they report or submit bug fixes back to the Core
Members (Council). Active Developers emerge when some big
changes are needed, such as the requirements of dealing with the
Japanese language in PostgreSQL Active Developers often work
with other Peripheral Developers and Bug Fixers to develop a
patch for the new requirements, and the patch is finally
incorporated into the major version of the system if it has been
widely tested and approved by Core Members (Figure 2b).

6. DISCUSSION
We do not mean tl~t the three types described in the above
section cover all the OSS projects. Our attempt at defining three
types of OSS is to create a general understanding that although all
these systems are called Open-Souree, differences exist in primary
objective, control style, system evolution pattern, community
structure and evolution pattern (See Table I for a summary).

6.1 Understanding Differences of OSS
Projects.

Recognizing the differences of different types of OSS projects
help OSS developers to identify their projects with a particular
type and to take appropriate measures to guide the management
and operation ofthe OSS project.

For example, the Project Leader of an Exploration-Oriented OSS
should pay extra attention to the quality and readability of the
source code by enforcing strict coding, formatting, and
documenting conventions so that it will attract as many Readers as
possible and fully fulfill its goal of disseminating good

8 3

Table 1: Three Types of OSS Projects

Type Objective Control style System evolution Community structure Major Examples
pattern problems

Exploration-
Oriented

Utility-
Oriented

Service-
Oriented

Sharing
innovations
and knowledge

Satisfying an
individual need

Providing
stable services

Cathedral-
like central
control

Bazaar-like
decentralized
control

Council-like
central
control

Single branch

Feedback from the
community

Multiple versions
coexist

Tournament style

Single branch

Patches merged
through control

programming skills and knowledge. To avoid unnecessary
fragmentation of the community resources caused by forking,
Project Leaders need to adapt and respond to the needs and
attitudes o f the community members. On the other hand, Utility-
Oriented OSS projects do not need to worry too much about
forking. Instead, they need to develop a social mechanism that
coordinates and encourages peer support among the community
members and to facilitate the easy choice of different
implementations of the same functionality. Service-Oriented OSS

Project Leader

Many Readers

Many Peripheral
Developers
Peer support to Passive
Users
Core Members instead
of a Project Leader

Many Passive Users
that develop systems for
end-users

Subject to
split

Difficult to
choose the
right
program

Less
innovation

GNU systems

Jun

Perl

Linux system
excluding the
kernel

PostgreSQL

Apache

OSS system is simply abandoned by most community members,
making the OSS project a victim of ira own success.

An Exploration-Oriented OSS may also mutate into a Service-
Oriented type simply because the original Project Leader has lost
his or her cxploration spirit, or because the system has grown too
large to be controlled by any single person.

One example that has successfully mmplcted the mutation from
an Exploration-Oriented OSS to a Service-Oriented OSS is the

projects should avoid being overly conservative in dealing with
changes. Furthermore, they must create a social mechanism that
encourages and facilitates community members to aspire to the
Core Members status. Otherwise, the evolution of the system as
welt as the community will stop.

6.2 Evolution of OSS Projects

Tel project (http://www.scdptics.cam/). Tel was initially created
in 1988 by John Ousterheut who wanted to explore a different
style of system programming through the creation of a scripting
language for "gluing" existing applications [15]. More than a
decade later, Tel is now used by thousands of companies and over
500,000 users, often for mission-critical applications. In the
earlier years, Tel was developed as Exploration-Oriented OSS,

The type of an OSS project may evolve, as the primary objective
of, and other factors affectin~ the OS$ project change over the
time. Our working hypothesis is that Exploration-Oriented OSS
and Utility-Oriented OSS are good for the initiation of an OSS
project, and Service-Oriented OSS is suitable for more mature
OSS projects.

Any motivated software developer can initiate an Exploration-
Oriented OSS. The success of an Exploration-Oriented OSS will
a t ~ c t many followers, who, as users, at a certain point, will
demand stability because they have invested many efforts in the
OSS project and have used it to develop systems for end-users.
For the benefit of the OSS project itself and the community, it is
probably better for the OSS project to mutate into the Service-
Oriented type; otherwise, the OSS community may split or the

with Ousterhout deciding which extensions should be included
based on his own interest and feedback from the large community.
Since August 2000, the development of Tel is at the helm of the
Tel Core Team (TCT) that includes 14 members in addition to
John Ousterhout. The 14 members were elected by the Tel
community in recognition of their long-time devotion and support
of Tel. As other OSS projects mature, we believe that more and
more such mutation will happen.

Utility-Oriented OSS projects can also mutate into Service-
Oriented ones. Developers of competing implementations for a
similar functionality can join forces to create a team to develop a
system collaboratively that accommodate the different needs of
each developer. The Apache project was started in this fashion,
although the project, since it assumed the name of Apache, has

Figure 3: The Evolution Pattern of OSS Projects

8 4

been a typical Service-Oriented OSS one under the control of the
Apache Gmop, which started with 6 Core Members and now have
25 [12]. However, the original Apache Group was formed because
its members felt the need to combine their overlapping extensions
and bug fixes developed individually for the NCSA httpd
developed by Rob MeCooi, who left the system behind [4].

It is rather difficult to initiate a new Service-Oriented OSS project
from scratch. Service-Oriented OSS projects are easier to take off
if working systems exist already. Without a working system, few
users would be interested and a community cannot form. An
existing working system can serve a seed for further growth, end
new requirements and ideas writ be inspired as users start using
the system. For example, PostgreSQL is derived from m existing
research prototype.

Figure 3 hypothesizes a possible sustainable evolution pattern of
OSS projects. Exploration-Orianred and Utility-Oriented OSS
projects experience rapid evolution, mostly in linear fashion [7].
As the projects mature into Service-Oriented ones, the speed of
evolution will slow down to a stable growth. A new roond of
rapid evolution will start again if the stable OSS system inspires
new ideas or new requirements, giving birth to New Exploration-
Oriented or Utility-Oriented OSS projects, which will again
mature into new Service-Oriented ones.

This process is similar to the biological evolutionary process.
According to Mamrana and Varela [11], changes are determined
by the structure of an organism and a perturbation. A perturbation
itself does not determine how the organism evolves, but it triggers
the organism to change its structure. The evolved organism with
its new structure affects the outer environment and produces
another perturbation. This iterative process of the interaction
between the organism's structure and the environment through a
perturbation is a driving force of evolution,

We have observed and reported such an evolution pattern in the
Jun project [1]. Although Jun is primarily Exploration-Oriented,
because it is a library on which several applications have h~en
built, it is also com:erned with providing atab[e services to those
application developers. However, to fully document this
hypothesis illustrated in Figure 3, we need to study more OSS
projects for a longer term.

7. SUMMARY
As op en-Sourcc gains popularity, many software development
approaches are labeled open-Sonrce simply because one property
of the outcome is Open-Source. However, objectives, motivations,
collaboration models, system evolution patterns, and community
structures and evolution patterns differ significantly from projects
to projects. Rather than focusing on the common features of all
Open-Source projects, this paper attempted to systematically treat
the differences of OSS projects by examining the evolution
patterns of systems and communities. Through analyzing a case
study of four typical OSS projects, we proposed three types of
OSS projects. Understanding the difference of the different types
of OSS projects is the first step to build a theory that can guide the
development of OSS projects.

ACKNOWLEDGEMENTS
This research is partially supported by Information-processing
Promotion Agency (IPA), Japan. We thank the project members
who participated in our case study. We thank Jonathan Ostwald
for his profound comments and suggestions on earlier versions of
this paper.

REFERENCES
[1] Aoki, A., K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka,

B. Reeves, A. Takashlma, and Y. Yamamoto. A Case Study
of the Evolution of Jun: An Object-Oriented Open-Source
3D Multimedia Library, in Proceedings of 23rd International
Conference on Software Engineering (ICSE'01) (Toronto,
Canada, 200 !), IEEE Press, 524-533.

[2] Brown, J.S., and P. Duguid. The Social Life of Information.
Harvard Business School Press, Boston, MA, 2000.

[3] DiBona, C., S. Ockman, and M. Stone. eds. Open Sources:
Voices from the Open Source Revolution. 1999, O'Reilly &
Associates: Sebastopol, CA.

[4] Fielding, R.T. Shared Leadership in the Apache Project.
Communications of the ACM, 1999. 42{4): 42-43.

[5] FSF, GNU Coding Standards, at
htro:llwww.Lmu.ore/vren/standards toc.html, accessed on
2/11, 2002

[6] FSF, GNU Philosophy, at
httv://www.~nu.orpJnhilosoohv/nhilosonhv.html, accessed on
2/! l, 2002

[7] Godfrey, M., and Q. Tu. Evolution in Open Source Software:
A Case Study, in Proceedings of 2000 International
Conference on Software Maintenance (Ban Jose, CA, 2000).

[8] HaekVan, S., Where Did Spencer K.~ball and Peter Mattis
Go?, a t j ~ accessed on 2/11, 2002

[9] Kemerer, C.F., and S. Slaughter, An Empirical Approach to
Studying Software Evolution. IEEE Transactions on
Software Engineering, 1999. 25(4): 493-509.

[10] Lave, J., and E. Wenger. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press,
Cambridge, UK, 1991.

[11] Matumna, H.R., and FJ. Varela. The Tree of Knowledge:
The Biological Roots of Human Understanding. Shambhala
Publications, Boston, MA, 1998.

[12] Mockus, A., g. Fielding, and J. Herbslcb. A Case Study of
Open Source Software Development: The Apache Server, in
Proceedings of 2000 International Conference on Software
Engineering (1CSE2000) (Limerick, Ireland, 2000), 263-272.

[13] O'Keilly, T., OSI Business Support, at
htm://www.oDensonrce.qrg/advoescY/case for bo~iness.hrml,
accessed on 2/11, 2002

[14] O'geilly, T. Lessons from Open-Source Sottware
Development. Communications of the ACM, 1999. 42(4):
33 -37.

[15] Ousterhout,/. Scripting: Higher Lwel Programming for the
2 ! st Century. IEEE Computer, 199 It(March).

[16] Raymond, E.S., and B. Young. The Cathedral and the
Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O'Reilly, Sebastopol, CA, 2001.

[17] Tiernann, M. Future of Cygnus Solutions, in Open Sources:
Voices from the Open Source Revolution, Stone, M. (ed.),
O'Reilly, Sebastolml, 1999, 71-89.

[18] Torvalds, L. The Linux Edge. Communications of the ACM,
1999. 42(4): 38-39.

8 5

