
ACM SIGSOFT Software Engineering Notes vol 27 no 3 May 2002 Page 34

Issues of Dependability in Open Source Software Development
Tony Lawrie and Cristina Gacek

Department of Computing Science
University of Newcastle, Newcastle upon Tyne, UK

A.T.Lawrie@ ncl.ac.uk
Cristina. Gacek @ ncl.ac.uk

Abstract
This paper presents issues raised by the articles, presentations, and
discussions concerning Open Source Software, Trustworthiness,
and Dependability at the Open Source Development Workshop
held in Newcastle upon Tyne, UK, on the 25 th & 26 th of February
2002.

Introduction
We held a workshop on Open Source Software Development in
Newcastle upon Tyne, UK, on the 25 th and 26 th of February 2002.
The focus of this workshop was on dependability and open source
software development. Dependability is a deliberately broad term
which, among others, covers reliability, security, safety and avail-
ability | 1]~2].

Society's dependence on computer-based systems continues to
increase and the systems themselves (embracing humans, com-
puters and engineered systems) become ever more complex. There-
fore, there is a current strong interest in developing improved
means of specifying, designing, assessing, deploying and maintain-
ing complex computer-based systems in contexts where high de-
pendability is crucial.

Addressing the potential of the "open source approach" to contrib-
ute to aspects of dependability was the main objective of the Feb-
ruary workshop. One key observation is that there are many, quite
different, characteristics of projects which are described as "Open
Source" ~3]. The open source approach is sometimes characterised
as "massively diverse human scrutiny": this both extends the idea
of reviews or inspections and introduces a way of confirming final
decisions about the inclusion of changes to a system. It poses inter-
esting psychological, sociological and software engineering ques-
tions (http://www.dirc.org.uk/projects/dioss.html).

Examples of open source projects (e.g. operating systems, devel-
opment tools, web and mail servers) indicate that a community can
be built which can create software that is (claimed to be) highly
dependable. It is not entirely clear what determines whether such a
community can be built. Answering such questions requires inter-
disciplinary research involving people from various backgrounds,
including (but not limited to) sociology and computer science.

We were fortunate enough to get Graham Button and Peter Neu-
mann as keynote speakers, they added enormous value to the
workshop. Graham Button is a sociologist, working for Xerox Re-
search Centre Europe. He is well known for his work addressing
Software Engineering and its development organisations. Peter
Neumann is a computer scientist, working at SRI's Computer Sci-
ence Lab. He has made a major contribution to the general prob-
lem of risks of computer systems. Of specific relevance to this
workshop, Peter's more recent interest in Robust Open Source

(RoS) has lead to a widely disseminated mailing list.

We received a considerable number of very good contributions to
this workshop. The main areas addressed included: understanding
open source, trust and dependability, community, and software
engineering and open source. Paper submissions and conference
attendees came from a variety of sources in industry, government
and academia, some being personally involved in open source
software development projects (i.e. Apache & Mozilla), others in
using such systems, and still others in doing research on the topic.
This was coupled with an interesting diversity of disciplinary
backgrounds of the contributors, originating from several conti-
nents (America North and South, Europe and Oceania).

The discussions were lively and generated interesting insights.
Both participants and organizers expressed having enjoyed the
workshop's environment and discussions. In this short paper we
share some of the ideas and issues raised and/or discussed during
the workshop. The conference proceedings can be found at
http://www.dirc.org.uk/events/ossdw/OSSDW-Proceedings-
Final.pdf

Dependability and Open Source Products
The main focus of the workshop concerned attributes of Open
Source Software (OSS) products and processes that promote de-
pendability. Dependable systems are systems where trust can be
justifiably placed in the service the system provides 14]. However,
trust and trustworthiness can be different: trust may exist where
there is no evidence to justify the reliance placed in a certain sys-
tem, whereas trustworthiness suggests that there is assurance crite-
ria to justify our confidence in a system [4]. To be a dependable
and trustworthy 1 system, a computer system needs to embody cer-
tain attributes such as security, reliability, availability [5]|1]. A
number of the papers, presentations, and discussions, at the work-
shop, raised issues concerning not only the dependability of OSS
products but also the dependability attributes of the OSS software
processes that create them [4][6][5].

It was generally accepted, at the workshop, that OSS products are
not necessarily more dependable than non-OSS products [7].
However, due to the influencing role of the software process and
the increased openness of the OSS development paradigm, there
seems to exist greater potential to actively and positively influence
the eventual dependability of OSS products by influencing OSS
processes [4][8]. For example, large U.S. government initiatives
were presented that were primarily focused on promoting certain
dependability attributes through influencing OSS project design

i The terms Trustworthiness and Dependability are equivalent.
Trustworthiness is a U.S. term and Dependability is a European
term.

ACM SIGSOFT Software Engineering Notes vol 27 no 3 May 2002 Page 35

goals and stimulating a more knowledgeable, disciplined, and prin-
cipled approach to community-oriented software development in
the future 118].

A potential problem particularly associated with OSS is the vulner-
ability to attacks by distribution of maliciously altered versions of
software systems. How can OSS users be confident that the soft-
ware version they have downloaded is trustworthy? The KeyMan
software tries to avoid common pitfalls of simply using and check-
ing PGP signatures by managing keys, certificates and signatures
in a network of trust 119].

The breadth of applicability of the OSS approach was also consid-
ered in dependability terms 1110][3]. It was argued, presented, and
discussed that the OSS approach is largely driven by 'self-interest'
115]|7] and this can result in the development of products that exist
only in well established or well known product domains - such as
systems-software or off-the-shelf-applications 113][5]. At the devel-
opment stage, this may help in achieving dependability of such
products through greater intuitive forecasting and anticipation of
exceptions and faults that could occur during operational usage.
On the other hand, this also begins to suggest the limitations of
software products that can be developed using the OSS paradigm
I[31115]. Such views were reinforced by the presentation of commu-
nity support for OSS projects at Source Forge
(http://sourceforge.net/) which indicated that very few OSS pro-
jects can generate enough support to be considered a sustainable
success 1[11].

Dependability and the Open ,Source Process
The importance of architecture in composing trustworthy software
systems was stressed by the keynote speaker Peter Neumann as
being particularly suitable to collaborative development found in
the OSS approach 114]. Whilst these aspects are of equal impor-
tance to both OSS and non-OSS development, it was believed that
OSS approaches were considered to be less constrained by com-
mitments to legacy applications and imposed reliance upon com-
mercial obligations - such as time-to-market and budget cost-
cutting 114]. Indirectly, these views were also further reinforced by
the other keynote speaker Graham Button whose ethnographical
social studies of traditional software engineering indicated that
commercial, political, and schedule influences create barriers to
open reviewing and sharing of source-code 1110]. This can result in
an increased need to improve the visibility through documentation
of the development work ~10]. Nevertheless, such contingencies
are often thwarted through the prioritising of productivity over
quality which then views documentation work being considered a
less important overhead that does not help move the project for-
ward to completion [101117]. By contrast, the OSS approach focuses
mainly upon the source-code as a critical co-ordination and evalua-
tion device [12]. This, along with the inability to impose external
process constraints of schedules and budgets, helps make the OSS
development work less error-prone and more visible 117]. These
influences may positively promote fault prevention strategies 115]
and lead to higher levels of code reuse and increased knowledge
acquisition during the OSS approach 1[1011[13][5].

Increased dependability of computer systems rely also upon a
range of software process characteristics. Firstly, effective
tool/method support is considered vital for promoting higher qual-

ity assurance [8]. One aspect that became clear from two presenta-
tions 1112][14] is that the stereotypical view of the "Bazaar" model
is not as chaotic and ad-hoc as it first appears 117]. For instance, the
ethnographic study of the Apache Cocoon project suggests that the
work is carried-out along highly organised lines where individual
developers orientate their effort towards advancing the project - as
a whole 1112]. Such findings were further reinforced by the case-
study insights into the OSS process of the Mozilla Web-Browser
project - where sophisticated process tool-support are used to en-
hance collaborative development, debugging, and reviewing of
submitted code 1114]. Secondly, the quality and experience of the
people involved in software development were also considered, as
the value of human intelligence, experience, and foresight in pro-
moting trustworthy computer systems development and composi-
tion was particularly stressed by 114].

Therefore, the increased potential for diverse collaborative devel-
opment and community bug finding were also discussed [7]. With
respect to development, forms of human redundancy and diversity
at the process level were presented and discussed. This was con-
sidered in terms of engineering diversity through differentiated
non-functional design goals of developers to help assure depend-
able system composition 115]. There was some doubt whether the
OSS paradigm does actually accommodate for human redundancy
and diversity - at the development level 117]. However, there was
general agreement that there exists the increased potential for both
in the OSS approach [7]. In terms of community fault-detection,
removal, and correction, formal probabilistic models were pre-
sented and discussed that considered the human diversity potential
for individual and community usage profiles and its potential for
increasing the reliability growth of OSS products via fault-finding,
fault-reporting, and fault-removal over time 116]. Interest was
shown whether the formal model could be applied to existing large
OSS project tools (i.e. Bugzilla in the Mozilla project) to provide
comparative research evidence for the increased potential for us-
age-diversity in the OSS process 117].

Issues and Implications for OSS and Dependability
A major consideration for dependability in OSS development con-
cerns the need for research-based evidence to indicate which at-
tributes of both the OSS and non-OSS processes can help assure
dependability of the software products they produce. The open and
public nature of the OSS approach offers lower confidentiality
barriers of access for active influence and/or research involvement
in OSS projects 118]. However, if adequate comparative research is
not undertaken to measure the benefits of introducing and promot-
ing formal software engineering initiatives into OSS projects, it
will be difficult to objectively determine whether initiatives - such
as the CHATS 2 programme, are responsible and justify increased
trust in certain OSS products. It may be that the introduction of
more traditional software engineering tools, methods, and tech-
niques, may not result in dependability improvements and merely
give the impression of OSS products being more dependable and
trustworthy. These research issues raise long-standing contrasts of

2 "CHATS" is an acronym for Composable High Assurance
Trusted Systems. It is a U.S. Defence Advanced Research Projects
Agency (DARPA) programme supporting high assurance in Open-
Source operating system technologies |8].

ACM SIGSOFT Software Engineering Notes vol 27 no 3 May 2002 Page 36

the trustworthiness between the formal and informal approaches to
software development. Therefore, the merits of both software de-
velopment paradigms require comparative research based evidence
to determine both the process attributes that result in increased
system dependability ~6] and their transferability from one para-
digm to the other. For example, even if such formal influences may
lead to increased trustworthiness of OSS products, can more disci-
plined traditional software engineering approaches be reconciled
with the pragmatic approaches naturally, and culturally, adopted in
OSS projects? It may be found that this only results in reducing
product 'self-interest' and consequently support for such projects
that are vital for leveraging the power of the OSS approach - in
terms of increased diversity for collaborative development and
fault-detection/correction. Consequently, it is not only dependabil-
ity but also transferability that is important OSS and dependability
research issues.

The nature of the types of products that can be developed success-
fully in the OSS approach is also an important consideration for
dependability that was discussed at the workshop ~7]. It has been
discussed already that the OSS process may be restricted to devel-
oping only certain categories of software products - such as sys-
tem-software ~3]~5]17]. However, dependable systems-software -
such as operating systems, are considered a prerequisite for further
composing and building on trustworthy and dependable systems
|4]. As a result, the OSS approach may prove to be the most effec-
tive development approach for achieving a dependable system
layer in IT infrastructures - leaving non-OSS approaches more
suitable for the development of specific IT application domains [3]
or where high levels of dependability are essential for initial sys-
tem deployment (such as safety-critical systems) ~6].

Business and Government attitudes vary also towards OSS. Prod-
uct economics and functionality rather than system composition
and dependability seemed to be the dominant commercial para-
digm |7]. This is reflected in many of the strategic evaluation
frameworks that have emerged to appraise the suitability of OSS
product procurement ~7]. Some focus solely upon the commercial
advantages - in terms of viewing OSS as a cheap IT infrastructure
alternative ~7]. Others, however, are more encompassing, and in-
corporate required system-oriented properties relating to non-
functional dependability and quality attributes (i.e. security, avail-
ability, reliability etc.) ~15]. These frameworks are indicatory that
system, quality, composition, and dependability, are considerations
that are increasingly becoming more of an explicit infrastructure
analysis and trade-off consideration in making strategic IT/OSS
business decisions.

Finally, one other aspect that indicates the contrast between the
informal OSS approach and the more formal software engineering
processes are the methods and tool-support used in the respective
paradigms. In OSS, tools are geared towards enhancing human
collaboration and co-ordination during the development activities
~12]~14], whereas, traditionally, software engineering has typically
been more oriented towards reducing and deskilling the human role
of the developer through tool-support and methods that automate
the software construction task wherever possible. This raises con-
siderations also regarding trust issues of the respective OSS and
non-OSS paradigms. Can OSS products be trusted if the OSS
process itself is not trusted? In OSS, it appears that human innova-

tion and creativity is actively promoted and encouraged, whilst the
traditional software engineering paradigm appears to trust the
methods, techniques and tools that seem to dominate in that para-
digm. Therefore, trust issues connected with this centre upon that
of increased human development freedom offered by the OSS ap-
proach.

Nevertheless, both paradigms still recognise that there is no substi-
tute for human intelligence, experience, and foresight in achieving
trustworthy systems and composition ~4]. In this respect, there still
appears to be little known concerning the true value and creative
role of individual and collaborative design decision-making that
may result in greater system dependability. Yet, it is clear from
~12]~14] that the increased openness and availability of OSS tool-
support and source-code repositories begins to permit such investi-
gations. Furthermore, associated academic initiatives - such as the
GENESIS project, offer future opportunities to investigate and
gain insight into what individual and collaborative development
decisions promote or hinder design for dependability I16].

Conclusions
Whilst OSS products may be limited to the development of sys-
tems-oriented software, such systems are vital for further trustwor-
thy composition and building of dependable systems.

At the process level, the OSS approach is not subjected to the same
level of negative external process constraints of time and budget
that can often subtly undermine the development of dependable
systems within an organisational setting. Furthermore, despite the
characterisations of the OSS approach as being highly ad-hoc and
chaotic, OSS projects appear to be highly organised, in many
cases, and provide tool-support focused upon enhancing human
collaboration, creativity, skill, and learning - considered vital in
developing trustworthy systems.

Nevertheless, the drive to improve the quality assurance of the
OSS process and influence them through the introduction of tools,
methods, and techniques from traditional software engineering
raises issues concerning "how" trustworthy the OSS process, itself,
is often perceived by organisations and government departments
with a high dependency upon IT infrastructures.

It is clear that there is as much variation in attributes among OSS
projects as among non-OSS ones. Several of these attributes are
not restricted to either class of projects ~3]. Hence dependability
should be dealt with at the project attribute level and not by using
such broad terms as OSS and non-OSS. Comparative research is
therefore required - not only to provide evidence of which process
attributes from both paradigms can improve the dependability of
future software products, but also to determine whether Such at-
tributes can be successfully transferred from one paradigm to the
other.

Acknowledgements
This workshop could not have been successful if it wasn't for its
excellent set of participants, each of which openly shared his/her
own personal insights and experiences on various matters. Hence
we thank them all for playing their pivotal role so well.

Another extremely important success factor was the support and

ACM SIGSOFT Software Engineering Notes vol 27 no 3

dedication of several people involved in various aspect s of the
workshop organisation. We are very thankful to all of them, includ-
ing: Joan Atkinson, Budi Arief, Denis Besnard, Angela Birrell,
Diana Bosio, David Greathead, Cliff Jones, Mark Rouncefield,
Caries Sala-Oliveras, Claire Smith, and Tim Smith.

We are grateful for the support of our sponsors, the Department of
Computing Science and the Centre for Software Reliability at the
University of Newcastle, as well as the UK EPSRC project on De-
pendability Interdisciplinary Research Collaboration (DIRC -
http://www.dirc.org.uk/).

References
[1] Laprie, J.C. (Ed.) (1992): Dependability: Basic concepts and
terminology - - in English, French, German, Italian and Japanese.
In Dependable Computing and Fault Tolerance, Vienna, Austria.
Spnnger-Verlag.

[2] Randell, B. (2000): Turing Memorial Lecture: Facing up to
faults. In The Computer Journal, Vol. 43, No. 2, pp. 95-106.

[3] Lawrie, T., B. Arief, and C. Gacek (2002): Interdisciplinary
Insights on Open Source. In Proceedings of the Open Source Soft-
ware Development Workshop, Newcastle upon Tyne, UK, Febru-
ary 25-26, 2002, ed. C. Gacek and B. Ariel. pp. 68-82.

[4] Neumann, P. (2002): Developing Open Source Systems: Prin-
ciples for Composable Architectures (keynote speech). In Proceed-
ings of the Open Source Software Development Workshop,
Newcastle upon Tyne, UK, February 25-26, 2002, ed. C. Gacek
and B. Arief. pp. 2-19.

[5] Lawrie, T. and C. Jones (2002): Goal-Diversity in the Design
of Dependable Computer-Based Systems. In Proceedings of the
Open Source Software Development Workshop, Newcastle upon
Tyne, UK, February 25-26, 2002, ed. C. Gacek and B. Ariel. pp.
130-154.

[6] Bosio, D., B. Littlewood, L. Strigini,'and M. J. Newby (2002):
Advantages of Open Source Processes for Reliability: clarifying
the issues. In Proceedings of the Open Source Software Develop-
ment Workshop, Newcastle upon Tyne, UK; February 25-26, 2002,
ed. C. Gacek and B. Ariel. pp. 30-46.

[7] This reference refers to prominent issues raised by participant
delegates during the discussion sessions at the workshop.

[8] Murphy, R. and D. Mauhgan (2002): Trusted Open Source
Operating Systems Research and Development. In Proceedings of
the Open Source Software Development Workshop, Newcastle
upon Tyne, UK, February 25-26, 2002, ed. C. Gacek and B. Arief.
pp. 20-29.

[9] Laurie, B. and M. Byng-Maddick (2002): KeyMan: Trust Net-
works for Software Distribution. In Proceedings of the Open
Source Software Development Workshop, Newcastle upon Tyne,
UK, February 25-26, 2002, ed. C. Gacek and B. Ariel. pp. 197-
203.

[10] Button, G. (2002): Organisational Considerations in the Work
of Software Engineering (keynote speech). In Proceedings of the
Open Source Software Development Workshop, Newcastle upon
Tyne, UK, February 25-26, 2002, ed. C. Gacek and B. Arief. pp. 1.

May 2002 Page 37

[11] Hunt, F. and P. Johnson (2002): On the Pareto Distribution of
Open Source Projects. In Proceedings of the Open Source Soft-
ware Development Workshop, Newcastle upon Tyne, UK, Febru-
ary 25-26, 2002, ed. C. Gacek and B. Arief. pp. 122-129.

[12] Mackenzie, A., P. Rouchy, and M. Rouncefield (2002): Rebel
Code? The Open Source 'Code' of Work. In Proceedings of the
Open Source Software Development Workshop, Newcastle upon
Tyne, UK, February 25-26, 2002, ed. C. Gacek and B. Arief. pp.
83-100.

[13] So, H., N. Thomas, and H. Zadeh (2002): What is in a Ba-
zaar? A Model of Individual ParticiPation in an Open Source
Community. In Proceedings of the Open Source Software Devel-
opment Workshop, Newcastle upon Tyne, UK, February 25-26,
2002, ed. C. Gacek and B. Arief. pp. 101-121.

[14] Reis, C., R. P0ntin, and M. Fortes (2002): An Overview of the
Software Engineering Process and Tools in the Mozilla Project. In
Proceedings of the Open Source Software Development Workshop,
Newcastle upon Tyne, UK, February 25-26, 2002, ed. C. Gacek
and B. Arief. pp. 155-175.

[15] Kenwood, C. (2002): A Business :Case Study of Open Source
Software. In Proceedings of the Ope n Source Software Develop-
ment Workshop, Newcastle upon Tyne, UK, February 25-26, 2002,
ed. C. Gacek and B. Arief. pp. 47-67.

[16] Boldyreff, C., D. Nutter, and S. Rank (2002): Architectural
Requirements for an Open Component and Artefact Repository
System within GENESIS. In Proceedings of the Open Source
Software Development Workshop, Newcastle upon Tyne, UK, Feb-
ruary 25-26, 2002, ed. C. Gacek and B. Arief. pp. 176-196.

