
32 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

TE
R

R
Y

M
IU

R
A

Open source is a term that has recently gained currency as a way to describe the

tradition of open standards, shared source code, and collaborative develop-

ment behind software such as the Linux and FreeBSD operating systems, the

Apache Web server, the Perl, Tcl, and Python languages, and much of the Inter-

net infrastructure, including Bind (the Berkeley Internet Name Daemon servers

that run the Domain Name System), the Sendmail mail server, and many other

programs. The Open Source campaign became international news in 1998 when

Netscape decided to make the next version of its Web browser (Mozilla) an

LESSONS
fromOPEN-
SOURCE
SOFTWARE
DEVELOPMENT

Tim O’Reilly

COMMUNICATIONS OF THE ACM April 1999/Vol. 42, No. 4 33

34 April 1999/Vol. 42, No. 4 COMMUNICATIONS OF THE ACM

open-source product, and when IBM adopted the
Apache Web server as the core of its WebSphere
product line.

Officially, open source (which is a trademark of the
Open Source Initiative—see www.opensource.org)
means more than that source code is available. The
source must be available for redistribution without
restriction and without charge, and the license must
permit the creation of modifications and derivative
works, and must allow those derivatives to be redis-
tributed under the same terms as the original work.
Licenses that conform with the Open Source Defini-
tion include the GNU Public License (GPL), the
BSD license used with Berkeley Unix derivatives, the
X Consortium license for the X Window System, and
the Mozilla Public License.

But open source is more than just a matter of
licenses. Some of the most significant advances in
computing, advances that are significantly shaping our
economy and our future, are the product of a little-
understood “hacker culture.” It is essential to under-
stand this culture and how it produces such innovative,
high-quality software. What’s more, companies large
and small are struggling to understand how the ethic
of free source code distribution affects the economic
models underlying their present businesses.

This collection of commentaries attempts to pro-
vide some perspectives on open-source software that
can be applied by anyone developing software, not
just by people fully committed to the open-source
model. I’ve tried to put open source in the broader
context of collaborative software development, while
four open-source pioneers, Linus Torvalds (Linux),
Larry Wall (Perl, patch, rn), Roy Fielding (Apache),
and John Ousterhout (Tcl/tk), provide background
on their own work.

It’s important not to reduce the open-source debate
to a question of NT versus Linux, or Microsoft versus
the rest of the world. We need to understand how the
lessons of open source can be applied to software
development across the board. Can companies create
better products by giving their user communities
more influence in product development and evolu-
tion? Can users get more “bang for the buck” from
their own custom software by sharing it, and receiving
the work of others in return? And as the Internet,
rather than the desktop, becomes the focus for new
applications, do current open-source projects teach
principles of large-scale collaborative work that can be
applied fruitfully to endeavors other than software
development?

Those interested in the topic of open source
are encouraged to read Eric Raymond’s seminal
paper, “The Cathedral and the Bazaar”

(www.ccil.org/~esr/writings), which inspired Netscape’s
decision to release its browser as open-source software. See
also Mark Stone’s “Science of the New Renaissance”
(www.edventure.com/release1/1198.html), which argues
that open source is a natural extension of the Western
scientific tradition.

Software: Product or Service?
With Microsoft’s rise to dominance in the software
industry, it’s easy to think of software primarily as a
product, something that is developed, packaged, and
sold. In fact, shrinkwrapped PC applications repre-
sent only a small fraction of the total software in use.

Most large business applications are either inter-
nally developed or else so heavily customized that they
might as well be. Most scientific applications are “one-
off,” or if built on top of off-the-shelf tools, include a
large custom component. Administration, whether of
a network, a large computer system, or a Web site,
requires the constant development of small tools,
scripts, and “glue applications” to make everything
work together. Even in the desktop productivity envi-
ronment, power users develop macros and other “pro-
grams” to automate repetitive tasks.

Whether or not open source is a superior method-
ology for the development of packaged end-user soft-
ware products is currently being tested in the
marketplace. It is already clear, though, that open
source is a superior methodology for the development
of this kind of custom software. Giving users of a
product access to its source code and the right to cre-
ate derivative works allows them to help themselves,
and encourages natural product evolution as well as
preplanned product design.

What’s more, whether or not open-source tech-
nologies succeed as packaged products, their greatest
economic contribution may be the new services that
they enable.

The Internet is the most striking example of a mar-
ketplace, full of economic opportunity, that has
grown out of the open-source software community.
The Internet (and the various networks that eventu-
ally became amalgamated into it) was both the mech-
anism for and the product of an enormous explosion
of collaborative development. Even now, open-source
programs such as Bind, Sendmail, and Apache, plus
commercial programs emulating functionality origi-
nally developed by the open-source community (Web
browsing, Internet email), are the heart of the Inter-
net. Companies ranging from Uunet (and the entire
commercial ISP market), Yahoo (and the whole com-
mercial Web), plus suppliers from hardware compa-
nies to advertising agencies have benefited from the
open-source revolution. The commercial impact can

already be measured in billions of dollars.
Perhaps even more importantly, the open-source

process reflects a powerful global trend toward net-
worked collaboration. Just as the printing press
enabled the spread of knowledge during the Renais-
sance period, the Internet is enabling large-scale coop-
erative development efforts today. The speed at which
information spreads has increased by orders of magni-
tude. What’s more, the principles of freedom of
speech and information interchange take on new sig-
nificance in the context of our interaction with com-
puters. After all, what is a program but a form of
speech with a computer? And what is open source
then but the open, public discourse that has always
led to the advancement of human knowledge?

And with the spread of the Web, which mixes
human-readable text (HTML files) with programmed

functionality in the form of CGI scripts, inline
JavaScript, server-side Java, or ASP, the boundaries of
human-computer communication and human-
human communication are increasingly blurred. The
vibrancy of the computer industry may, in the end, be
a reflection of the vibrancy of our communication
with each other.

Innovation and Evolution
One of the problems of commercial product devel-
opment is that the focus is on creating products that
will make a profit for their creators. There are many
products that meet real needs that are either too spe-
cialized or too early to market to produce the return
on investment that either a large company or a ven-
ture-backed startup demands.

In fact, many open-source projects have been
started to solve a user’s particular problem. The return
on investment is the solution to the problem. But
what the early open-source developers realized was
that by giving away their work to the networked com-
munity of like-minded developers, they might get an
additional dividend of functionality returned by other
users of the product.

It was the coincident evolution of wide-area
computer networking that gave the real impetus to
open source. Previously, user communities were cen-
tered around vendors and their products. But the pos-

sibility of software distribution via FTP, email, and
Usenet news enabled a host of independent develop-
ers to create unintended benefits simply by passing
software around, in a game of “telephone” that some-
times led to Babel, but more often led to evolutionary
advances.

A brief look at the early history of many open-
source projects illustrates the way they were developed
to solve a small problem that later turned out to be
significant.

Eric Allman originally wrote a precursor to Send-
mail because it was easier to route email for other
researchers at UC Berkeley than it was to give them a
login on his machine. No one imagined that 20 years
later, email forwarding across heterogenous networks
and systems would be a critical Internet application.
Larry Wall originally wrote Perl to solve some nagging

problems in system administration. Tim Berners-
Lee created the World-Wide Web to help high-energy
physicists (a tiny market by any measure) share their
work. This was in the grand tradition of much of the
foundational Internet software, which was developed
to enable academic information sharing. Richard
Stallman reportedly started on the path that lead to
the Free Software Foundation, the GNU project, and
ultimately, large parts of Linux, because a vendor
would no longer provide source code for a printer dri-
ver that was malfunctioning. None of these tremen-
dously influential projects would have started in a
traditional economic marketplace, and each of them
took years to exert its transforming effect. It is pre-
cisely because open source gives individuals the power
to attack small problems that it is able to create unex-
pected innovations.

As Peter Schwartz says in his book, The Art of the
Long View, (Doubleday, 1991), “People and organiza-
tions often organize knowledge concentrically, with the
most cherished, vital beliefs at the protected center. At
the outer edge are the ideas which the majority rejects.
A little closer to the center are the fringes—areas not yet
legitimized but not utterly rejected by the center either.
Innovation is the center’s weakness. The structure, the
power, and the institutional inertia all tend to inhibit
innovative thinkers and drive them to the fringes.”

To be sure, there are significant innovations that

COMMUNICATIONS OF THE ACM April 1999/Vol. 42, No. 4 35

Giving users of a product access to its
source code encourages natural product evolution as

well as preplanned product design.

come from a concerted attack on known problems
and market opportunities. The mechanisms for
undertaking such development projects are well-
established. But open source is a low-cost way of
increasing the opportunity for surprise.

Open source is a way of life, not a better way of
picking potential winners and losers. Open-source pro-
grams such as Linux, Apache, and Perl are no longer
fringe products—they are well on their way to the cen-
ter. To generate the next big open-source surprise, you
need to provide the conditions of innovation: open
standards and protocols that allow people to connect
new software easily to existing software, good docu-
mentation, and a well-defined extension mechanism
that allows people to “roll their own” without having to
get permission of a central architect. And of course, you
need licenses that allow people to build on the work of
others without first getting permission.

Cooperative Development
Many of the assertions of “The Cathedral and the
Bazaar,” including the now famous “given enough
eyes, all bugs are shallow,” are based on the idea that
the Internet enables a larger community of develop-
ers than can be applied to a project by even the
largest companies.

By making the users of a product into codevelop-
ers, you speed debugging, improve quality, and gain
specialized new features that may eventually turn out
to be important to a wider audience. Because open
source allows users to “scratch their own itch,” fea-
tures can be introduced with low overhead, and live
or die in a marketplace that is much more fecund
than even the fevered pace of Silicon Valley venture
capitalists (and orders of magnitude more so than the
centralized product planning of large companies).

This community development aspect of open
source means that user communities, not the prod-
ucts themselves, may be the key determinants of a
project’s success. As an entrepreneur and angel
investor, I am approached by many developers look-
ing to turn a marginal product with little market
acceptance into a star using open source as some kind
of magic bullet. But it doesn’t work that way. The
product must meet a real need, and attract a passion-
ate core of users who want even more from it than the
original developer has provided. Nor can a vendor
with an established product hope that by contribut-
ing that product to an existing open-source commu-
nity, they will suddenly galvanize support for that
product. Instead, a product must be open sourced to
the community of its users.

This leads to an idea that may be anathema to
some open-source advocates because it doesn’t adhere

to the Open Source Definition, but that may have
some merit, especially for large companies wanting to
leverage some of the principles behind open source
without committing to full free software redistribu-
tion, most notably by potential competitors. And that
is the creation of what you might call, somewhat face-
tiously (as did a participant at a recent large company
executive briefing on open source), a “gated open-
source community.”

A company with a large user base might want to
keep strict control over who has access to its source
code (paying customers), but provide full source
code, complete documentation, and mechanisms for
customer extensions to be folded back into the core
source tree. The company may want to study how
open-source projects like Apache manage collabora-
tive development, and apply those principles to inter-
actions with its customers, without planning to
release the software to the world. This was in fact the
way software was handled in the early mainframe
days—software came free with the hardware, and
such IBM products as CICS were originally devel-
oped by customers and contributed to IBM for main-
tenance and further development.

The lessons of the Apache project, as outlined by Roy
Fielding in his contribution to this section, are
extremely relevant in this regard. A community needs to
develop processes for voting on new features, deciding
who has access to the source tree, and communicating
in ways that do not stifle the free-floating development
that is so central to the appeal of open source.

Of course, one key question in such an experiment
would be the size of the developer community
required to get the open source “network effect.”
Many proprietary developer communities may just be
too small. In order to leverage the entire Internet-
accessible developer community without giving away
the store, vendors are starting to experiment with new
licenses. One approach is to distribute source code,
and allow unlimited modification and redistribution
for noncommercial use, but require a different license
for commercial distribution.

This is the approach taken by Sun’s recent Java
Community Source License as well as by the Aladdin
Free Public License used by Peter Deutsch, developer of
the widely used GhostScript package. In an interview
(www.devlinux.org/ghost/interview.html) Deutsch
explained his thinking on “community development”:

If you are willing to play by what I think are the
1960s rules, then the Aladdin license gives you exactly
the same rights and benefits as the GPL: [the software is]
free to use, it’s free to copy, and you are free to modify it.

In a nutshell, I see the 1960s rules, or the cooperative

36 April 1999/Vol. 42, No. 4 COMMUNICATIONS OF THE ACM

rules, this way: “everybody contributes, so everybody benefits.”
Unlike the GPL, I make a very solid distinction

between distribution as part of a commercial endeavor
and distribution not as part of a commercial
endeavor....

The philosophical weight of this is that if you want
to play by cooperative rules, you get the benefits of
Aladdin’s work within the context of those rules. If you
are not playing by the cooperative rules, then it’s going
to cost you something to have the rights to get the value
from Aladdin software.

In many ways, the heart of many open-source com-
munities is a social compact between a software devel-
oper and his or her users, in which both agree to
cooperate under certain rules that are beneficial to
both parties. At best, this is also true of developer
communities that evolve around proprietary prod-
ucts; the point is that open source substitutes cooper-
ation for financial transactions as the glue that ties the
community together.

The Importance of Extensibility
Licenses that lower the barriers to cooperation are a
key part of the open-source phenomenon. However,
as both Linus Torvalds and Larry Wall argue, part of
the success of their creations has also come from
technical decisions that have made it easier for oth-
ers to contribute. According to Linus Torvalds,
Linux has succeeded at least in part because it fol-
lowed good design principles, which allowed it to be
extended in ways that he didn’t envision when he
started work on the kernel. Similarly, Larry Wall
explains how he created Perl in such a way that its
feature-set could evolve naturally, as human lan-
guages evolve, in response to the needs of its users.

In fact, many successful open-source projects have
a modular architecture, which allows users to extend
the system’s functionality without having to change
existing core functionality. This allows an open-source
project to scale with its community while allowing an
original visionary developer (or team) to retain con-
trol over the core product.

Obviously, one of the areas for study is where the
ideal boundary ought to be between a core product
controlled by a single individual or small team, and
the input of the user community.

Commercial Product Development on
an Open-Source Base
Large companies are not the only players trying to
understand where the boundaries are between com-
mercial development and community-based open-
source development.

It is of course the great challenge for open source to
prove it can create products that are accessible to non-
technical users. Many open-source developers are exper-
imenting to find the best way for their work to “cross the
chasm” from early adopters to a wider market.

In his contribution to this section, John Ouster-
hout argues there is a natural complementarity
between open source and commercial development.
Open source provides raw material, if you will, that
can be further refined and extended by commercial
development.

Dick Hardt of ActiveState, which creates Perl prod-
ucts for the Win32 platform, makes a similar argu-
ment. In a presentation given at a recent Perl
conference, Hardt used the metaphor of logs and lum-
ber. Open source, he argued, is a great way to produce
logs. But while there are users who are happy to build
log cabins, or to split their own logs into lumber, a
wider class of users can be reached if companies provide
“lumber” in the form of pre-built binaries, value-added
interfaces or development environments, documenta-
tion, and other elements of commercial products.

Of course, there is a continuing discussion in the
open-source community about the best way to pro-
vide such commercial development. A company such
as Red Hat, which distributes Linux, is firmly com-
mitted to the GNU Public License, even for their
value-added extensions. Their argument is that pack-
aging, brand, and channels of distribution are suffi-
cient to protect their market and give them an
acceptable return on their investment.

Other companies, such as Ousterhout’s Scriptics,
Allman’s Sendmail, Inc., and Hardt’s ActiveState Tool
Corp., are taking a hybrid approach, providing both a
rich open-source product base and proprietary value-
added extensions. Strong partisans of the GPL and the
strict Open Source Definition (see www.open-
source.org/osd.html) might find fault with such
efforts. Ultimately, though, experimentation in the
market will tell us more than philosophical debates
whether an open-source license (or simply an open
architecture), access to source code (even if only on
the basis of a paid license), or tools for integrating the
user community into the development process, are the
most important elements in the continuing success
and scalability of open-source projects.

Tim O’Reilly (tim@oreilly.com) is the founder and CEO of
O’Reilly & Associates, a leading publisher of books about open-source
software. He convened the first “Open Source Summit” in 1998 to
bring together the leaders of major open-source communities and has
been active in promoting the Open Source Initiative through writing,
speaking, and conferences.

© 1999 ACM 0002-0782/99/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 1999/Vol. 42, No. 4 37

