
Educational Models and Open Source:

Resisting the Proprietary University

Brenton D. Faber
Clarkson University
8 Clarkson Avenue
Potsdam NY 13699

 315.268.6466
faber@clarkson.edu

ABSTRACT
This paper presents an educational model derived from open
source methods for computer programming. The article places
this search for an alternative model within a framework of
proprietary educational practices that are driven by a need for
efficiency and rationalization. As an alternative model, the
paper suggests that an open source derived educational
process would emphasize collaborative problem based
learning, working through drafts, risk taking, mentoring, user
testing, releasing early and often, developing in collaboration
with users, and rewarding and building from failure.

At the same time, the paper notes that such a system would
have much in common with existing theories of project-based
or activity-based learning and with traditional methods of
research and publication in scientific endeavors. However, the
paper also argues that such a method is different from the
open-course or open-curriculum projects recently publicized
by several well-known universities as these practices appear
to emphasize derived content rather than an open
representation of process, or how the content was developed.

Collaborative, problem-based learning provides constructive
approaches for building corporate and community
partnerships on university campuses. At the same time, the
model teaches students about collaborative work practices,
working as part of a larger community, and the nature of
collaborative knowledge building. As such, the model
reconnects knowledge creation to research communities and
to communities of users and it complicates the belief that
sustainable, useful innovation can occur within proprietary
systems.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces,
K.3.1 [Computer Uses in Education]: Education, training,
curriculum design, collaboration
K.4.2 [Social Issues]: Corporate interests in education;
proprietary commodification of knowledge

General Terms
Documentation, Design, Experimentation, Theory.
Keywords
Open Source Software, Educational models, Collaborative
design.
1.0 INTRODUCTION
In this paper I present and examine educational models that
emerge from open source processes of software design. These
models are applicable to both academic and practitioner work
settings as they bring together innovation, new knowledge
building, application, and implementation. Since the mid-
1980‘s managers, theorists, and academics have described
important changes in the ways individuals relate to their
organizations, workplaces, and communities. These changes
are evidenced in technological issues, as increased
technological development and competition has created new
forms and centers of power within organizations [12, 31];
global issues, as the search for new and expanding markets
and inexpensive labor has grown the geographical impact of
modern organizations [11, 18], and even in generational
issues as new generations of workers (commonly called “gen-
Xers” or “twenty-somethings”) bring different assumptions
about life, work, family, and community to organizations [3,
6, 21]. Together, these changes reflect the notion of modern
organizations described by Lyotard [16] as centers of
“pragmatic valencies” that are designed to optimize a
system’s performance-efficiency against social bonds of
community, narrative, and heterogeneity.

Described by Lyotard as a “postmodern condition” this new
system levels issues of difference, choice, or individuality by
rationalizing efficiency and power towards a logic of
maximum performance in any and all organizational settings.
The implications of this movement towards maximum
performance and efficiency can be readily seen in current
debates about education. Stanley Aronowitz, for example, has
criticized movements to corporatize education that focus
students on career-centered curriculum and workplace-
specific learning [1]. Similarly, other critics of corporate
influences in education have decried the decline of liberal
studies and science courses to applied occupational courses,
the ethics of university administrative practices, the
outsourcing of teaching positions, and the practice of various
university investment schemes as evidence of the rise of a
rationalist, efficiency-based culture [28]. Futher, other authors
have critiqued and argued against the rise of “corporate
universities” and the blurring distinction between traditional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’02, October 20-23, 2002, Toronto, Ontario, Canada.
Copyright 2002 ACM 1-58113-543-2/02/0010…$5.00.

31

sites of higher education and new for-profit players like the
University of Phoenix and DeVry Institute of Technology
[13].

What is at stake in these discussions of organizational change,
cultural change, and their inevitable impact on higher
education, is the relationship education may or may not build
between individuals, organizations, and communities. As
Geoff Sauer has noted, Lyotard’s prediction also rightly
claimed that with the movement towards hyper-efficiency
would come market segmentation and the proprietary
commodification of knowledge [23]. As management
searches for ways to rationalize production and make
organizations more efficient, knowledge of systems,
techniques, tools, and processes becomes a competitive
advantage. As such, organizational and strategic knowledge
can become more valuable when it is restricted from wide
dissemination, public knowleedge, and use. Such restrictions
have little effect on market practices already based on
economies of supply and demand. However, when transported
into an academic culture of knowledge creation, education,
and learning, proprietary restrictions on knowledge
dissemination have significant implications for schools,
communities, and individuals.

For the most part, proprietary models of knowledge
development and dissemination continue to dominate North
American business practices. Corporate methods of
innovation, research, and development continue to be well
guarded and highly protected. Copyright laws have extended
the duration of copyright eleven times since 1962. In 1998
copyright was extended to 95 years or 70 years past the
author’s death [23, p. 217]. In addition, recent actions by the
entertainment industry have shut down various internet
entertainment sites and jailed computer hackers because of
suspected copyright violations. Given this cultural
predisposition towards proprietary knowledge, it is not
surprising that a proprietary model has found so much traction
in current debates about higher education. As Sauer notes,
given that a four-year U.S. university degree can cost upwards
of $100,000, academic knowledges are “ripe prospective
territory” for commodification [23, p. 219]. In addition, the
potential wealth of new patents, sponsored research, and
clinical trials, leveraged against relatively inexpensive labor
and captial costs, make universities appealing places for
proprietary investment. As a result, the relationship between
educational structures and knowledge dissemination is a key
feature in the current debate over the corporatization of
education.

Proponents of the proprietary university would see the
knowledge created by university researchers and students
withheld from broad public dissemination but provided to the
highest bidder. This educational market would then “trickle-
down” to the point where university departments, classes,
research, and longevity would be subject to the same
conditions: those able to attract the most students and
sponsorships would receive the greatest rewards. Those
unable to attract or retain students or grant monies would
either be forced to change or leave the university. Advocates
of this market-based approach argue that it brings

accountability to higher education, it ensures that courses are
practical and applied, and it ensures that students and
employers are able to make curriculum changes as external
condition dictate.

2.0 OPEN SOURCE
Against this context of expanding commercial interests in
innovation, knowledge creation, education, and dissemination
has evolved an alternative form of innovation and product
development commonly described as “open source.” There
are several emergent incarnations of open source [14]
including open standards projects, open course materials
(such as that recently announced by MIT), partially open
projects, where some forms of collaborative software code are
buried behind closed systems (Macintosh), and even a new
process of intellegence gathering in public spaces called
“open source intellegence” [25]. As a method for developing
software, open source refers to collaboratively built code that
is shared by developers and users as they co-create a product.
Developers are geographically dispersed, often are unfamiliar
to each other, do not work for the same organization, and
represent varying levels of programming experience. In a
typical open source project, a developer will work from
existing or partial code to build a new tool or utility. The
developer will post the evolving code to a newsgroup whose
members will try out the program and provide feedback. At
times members will provide their own programming solutions
to problems the original developer may be having or to issues
the original developer had not seen. In this way the software
is built collaboratively. The final product is then posted to the
group and the code is made freely available. If other
programmers wish to change the code, they must repost their
changes to the wider community.

Initially, Linus Torvalds resisted allowing people to sell his
open source product, the Linux operating system. Originally,
his policy was straightforward, “you can use the operating
system for free, as long as you don’t sell it, and if you make
any changes or improvements you must make them available
to everybody in source code” [27, p. 94]. However, once
Linux had established momentum and was seen as a
recognized, coherent operating system, Torvalds allowed
others to sell the product so long as the other conditions were
still followed [27, p. 96].

Most versions of open source, such as those associated with
Linux, Perl, Apache, and Mozilla, cite Eric Raymond’s The
Cathedral and the Bazaar [20] as a founding influential
document for open source. Here, Raymond describes his own
efforts to build fetchmail, a web-based mail program, which
he undertook as a deliberate test of the open source process.
Another important source for open source is the Open Source
Initiative (www.opensource.org), a nonprofit corporation that
manages and promotes the open source definition and certifies
software as officially open source. According to this group,

“The basic idea behind open source is very
simple: When programmers can read,
redistribute, and modify the source code for a
piece of software, the software evolves. People
improve it, people adapt it, people fix bugs. And

32

this can happen at a speed that, if one is used to
the slow pace of conventional software
development, seems astonishing [19].

As Erik Berglund and Michael Priestley have noted, the open
source definition does not exclude the sale of open source
systems. However, it is the control over the source code that
is key to open source systems [2].

2.1 Open Source Development Process
Berglund and Priestley raise a key point about open source
when they write that the open source certification itself “does
not really describe the nature of open source development” [2,
p.134]. Berglund and Priestly note that projects such as Linux,
Mozilla, and Apache relied on large, dispersed, and
independent groups of programmers to contribute to the
software’s development. It is in this development process, and
in the ways these disparate groups work together to create
software, that open source can be seen to provide an
educational model. Raymond lists several lessons from his
own development experience that can help inform the way we
look at this process. The following is a partial list of
Raymond’s conclusions:

1. Every good work of software starts by
scratching a developer’s personal itch.
2.Good programmers know what to write. Great
ones know what to rewrite (and reuse).
3. If you have the right attitude, interesting
problems will find you.
4. When you lose interest in a program, your last
duty is to hand it off to a competent successor.
5. Treating your users as co-developers is your
least-hassle route to rapid code improvement and
effective debugging.
6. Release early. Release often. And listen to
your customers.
7. The next best thing to having good ideas is
recognizing good ideas from your users.
Sometimes the latter is better.
8. Often, the most striking and innovative
solutions come from realizing that your concept
of the problem was wrong [20].

In addition to Raymond’s conclusions, several academic
studies of open source development have provided some
insight into the development process by focusing on two
relevant issues: motivation to innovate and coordinating the
open source development process. These studies have
suggested that open source developers are motivated to
produce software because of the way the process builds
technologically superior software, generates collective wealth
(e.g. Red Hat), and provides social benefits in the forms of
altruism, reputation, ideology, and enjoyment. [10, 15, 17,
25]. However, discussions of coordination in open source
projects have led to conflicting interpretations of the process.
Whereas some scholars have stressed the use of highly
structured governance models [17], and strong leadership,
which includes vision and delegation [15], others reported
parallel development by loosely organized participants [10]
and a lack of team work and project sharing in the

development phase but extensive peer review and
modification after publication [30].

3.0 OPEN SOURCE EDUCATIONAL MODELS
Emergent in Raymond’s conclusions and in the findings
presented above are various starting points for an educational
model based on the open source development processes. In
what follows, I will outline these points and suggest some of
the ways they would be relevant to educational settings. Then,
in the paper’s conclusions, I will return to the initial cultural
discussion that initiated the paper to examine the kinds of
relationships and social visions such a model brings to the
classroom.

3.1 Problem-Based Learning
“Every good work of software starts by scratching a
developer’s personal itch”
Open source is project and problem based. Developers work
on projects that interest them and by working on interesting
and meaningful projects they also learn correlative
knowledge, skills, and aptitudes. Similarly, an educational
classroom could be based around specific projects that
students find interesting, motivational, and compelling. These
projects could integrate experiences from allied organizations
in either open-ended case formats or in actual projects.
Students would choose the projects they want to work on and
as they complete these projects they would also learn other
course relevant material. For example, if a group of students
decided to build an on-line training module for an
organization, they would need to learn not only web design
issues but also instructional design, implementation,
organizational communication, aspects of human resources
and training, working with clients, project management,
presentations, reports, and the training content. However,
rather than an instructor dictating that this material must be
learned, the students would come to realize that in order to
produce quality work they would need to learn these things.
In this case, rather than being the master of course content,
the instructor faciliatates the student learning and experience,
coaching the students with suggestions and options, leading
them to resources, texts, and relevant information, and
providing other advice to help them complete their projects.

3.2 Working from Texts, Working through Drafts
“Good programmers know what to write. Great ones know
what to rewrite (and reuse)."
Experienced writers know the importance of multiple drafts
and revisions. They also know that outside of a university
environment, few writers ever start with a blank screen. Yet,
university projects and assignments continue to perpetuate
single writers working on solitary, new projects. The open
source model changes this by introducing students to projects
in mid-stream. Plus, it forces students to acknowledge and
work with existing material, ideas, and attempted solutions;
situations that are much more realistic than the perpetual
“new” essay on Walden. An open source classroom would
present students with half-solved problems, texts in rough
draft, meeting notes, failed solutions, and dead ends. From
these loose collections of texts, data, and ideas, they would
forge their own texts and solutions. They would find problems

33

and tasks in process, learn what has already been
accomplished, create new project management tasks and
responsibilities, and then differenciate a new way to work on
the problem. In the same way the open source builds on and
integrates existing code, student projects would build on and
integrate existing work.

3.3 Encouraging Risk-Taking, Inquisitiveness,
Invention
“If you have the right attitude, interesting problems will find
you.”
An open source classroom would reward students for risk-
taking, for being inquisitive, and for trying to find new ways
to solve problems. As Yamauchi et al. explain, failure is a
common, expected, and anticipated part of open source
development and the open source community. They argue that
open source developers are “biased towards action” and that
“hidden experiments and failed results” are an essential part
of the open source culture [29, p. 334]. Such an environment
would be a significant departure from an educational culture
based on examinations, standardized testing, and other rote
devices that do not enable experimentation or enable students
to take positive lessons from failure and experimental actions.
While an examination-intensive environment may solve
assessment and discipline issues for schools, such an
environment does not teach students how to approach open-
ended problems, nor does it provide students with the
opportunities or the contexts for risk taking and for
developing an inquiring mind. Torvalds writes that the
hackers working on Linux become dedicated to their projects,
foregoing aspects of daily life because they love programming
and because they love being part of a global collaborative
project [27, p. 122]. Other writes have argued that
participants in open source projects are highly motivated to
work and to participate in the community [9, 15, 17, 25]. The
dedication of open source participants to their projects
presents a unique contrast to many educational environments
where educators complain that students are not motivated to
learn or to do well in school or on the job. Ironically, as an
undergraduate student, Torvalds built Linux outside of the
classroom on his own time and did not receive academic
credit for his work until his Master’s degree [27, p. 136].

3.4 Handing Off Projects and Mentoring New
Students
“When you lose interest in a program, your last duty is to
hand it off to a competent successor.”
When projects are assigned in an educational context, they are
usually determined by the length of the academic term. This
way, students may initiate a project, work on it for several
weeks, and then complete it for credit before the term ends.
However, this practice perpetuates the idea that all projects
start from scratch (see 3.2 above) and must not last longer
than a 12 week term. In addition, this practice does not teach
students the importance of effective documentation, note-
taking, and actual collaborative work because no one ever
continues the projects they initiate. As a result, students do
not learn how to gracefully and appropriately hand-off
projects, how to strategically break projects into stages, or
how to mentor new initiates into their projects. While these
are key aspects of project management in the workplace, there

are few contexts for even addressing these issues within the
term-to-term confines of most academic schedules.

An open source classroom would extend projects from a
single term or semester and would build in tools for handing
each project over to a new group. Documentation would
become an essential aspect of these projects because without
such records the new students would be unable to take on the
project and the previous students’ work would be
meaningless. In addition, past students would mentor new
students and perhaps even compete with other groups to
ensure that their projects would be continued by competent
successors. This approach would teach students to see
themselves as part of a larger trajectory of work rather than as
solitary instantiations of one project. In addition, it would
teach them to make temporal connections in their work spaces
-- connections to both the past and the future. As such, it
would teach students about the interdependence of project-
based work and how their own work fits within larger
frameworks and communities.

3.5 User Testing
“Treating your users as co-developers is your least-hassle
route to rapid code improvement and effective debugging.”
In an open source classroom, where projects are worked on
that address real-world problems, user testing becomes a vital
part of everyday work. Whereas academic essays, exams, and
other stagnent projects are addressed to one audience (the
professor) for a one-time purpose, open source projects are
successful only if people take them on and actually use them.
In this way, the skills and aptitudes that technical
communicators know best: audience awareness, rhetorical
purpose, functionality, contextual appropriateness, become
forefront in project management. Unfortunately, as many
current users of open source software are aware, current
documentation, interface design, and user-help practices
within the open source are not good and much software is
simply unusable by a generalist audience. Yet, as Berglund
and Priestley have shown [2], this situation is partly due to the
lack of a working framework for open source documentation
and to the lack of a strong research focus on open source
documentation, interfaces, and uses within the field of
technical communications. We can also hypothesize that this
situation is also the result of a lack of any pressing need for
integrating a user-focus in most academic contexts. In an
educational environment saturated with textbooks, lectures,
and standardized testing, and a new drive to administrative
and educational efficiency, students have little opportunity to
think about and practice user testing and user-centered design.
Similarly, their own experience as “users” of these
educational systems is largely devoid of any evidence of user-
centered approaches.

An open source classroom would build user-testing into
assignments and project managment. At the same time, the
course would “practice what it preaches” in its own
curriculum, administration, and approaches to students.
3.6 From Drafts to Final Product
“Release early. Release often. And listen to your customers.”
A crucial feature of the open source process is the release-

34

feedback-suggestions-revision process. This process provides
the developer with user feedback, suggestions for product
improvement, and ideas and solutions from other developers.
The process also creates the community of developers that is
central to the open source movement. By linking individual
developers to a larger programming community, open source
builds important social structures for developers. Torvalds
argues that one of the reasons for the success of open source
is that the process enables people to find places within a
social order [27, p. 246-248]. By including such a process
within an open source classroom, students will learn how to
work within a larger community of developers/inventors, how
to collaborate with each other, and how to learn the social
aspects of collaboration: how to provide useful feedback, how
to take criticism, how to integate other’s ideas into your own
work, how to share your ideas with others.

A release early, release often context teaches students to build
a community of workers and it helps to introduce them to the
various opportunities and problematics of organizational life
which most students will face once they graduate. Release
early/release often is also directly opposed to the lessons
students learn from the solitary tasks of writing independent
papers that have no larger audience and receive no peer or
instructor feedback prior to their final draft. Such a context
only furthers the proprietary, secretive culture noted in the
introduction to this paper. In addition, proponents of open
source methods also argue that solitary methods produce
inferior products. Although coding itself, like writing, is a
solitary activity, Raymond writes that,

. . .the really great hacks come from
harnessing the attention and brainpower of
entire communities. The developer who uses
only his or her own brain in a closed project
is going to fall behind the developer who
knows how to create an open, evolutionary
context in which bug-spotting and
improvements get done by hundreds of
people. [20]

By integrating a release-feedback-revise loop into the
classroom, students will learn how to leverage the strengths of
their communities to create superior projects and they will
begin to see themselves not so much as lone individuals but as
members of larger communities. In this way, the model
teaches project-related lessons and lessons in individual
responsibility, individual and group relations, and community
awareness and partnering.

3.7 Collaborative Development
“The next best thing to having good ideas is recognizing good
ideas from your users. Sometimes the latter is better.”
Collaborative development becomes the necessary
consequence of the open source model. In this model,
students will collaborate with other experts, with a broad
range of users, and with other groups who may have an
interest in their products. Thus, the consequences of
development become more significant along with the
responsibilities of development. For example, students may
need to gain information from legal authorities, from subject

matter experts, and potentially from 5th grade children who
may be using the product. Again, as noted in 3.6, this process
places the students in the center of a larger community, it
forces them to examine their own roles within these
communities, and it introduces them to the social aspects of
communities. This model also more accurately reflects the
ways students will be working once they graduate and join
organizations and work teams where innovation is a shared
process, where they will be working with peers from a variety
of backgrounds and specialist areas, and where their success
will depend on the success of their work team and their ability
to create products that people will want to use.

3.8 Rewarding and Building from Failure
“Often, the most striking and innovative solutions come from
realizing that your concept of the problem was wrong”
Finally, open source classrooms will need to find ways to
reward failure and turn failure into a positive lesson. To do
this, classrooms must allow students the time and the space to
run into conceptual obstacles, to undertake directions that
may not work, and to hit walls in their development. At the
same time, the instructor must create a learning context that is
flexible enough to show students what they have learned even
though they may not have completed their project (see 3.4) or
solved their problem. These are not easy challenges for
curriculum development or for highly motivated students who
have not been allowed to experience failure or who correlate
failure with self-esteem, future success, and self-image. As
Raymond notes, powerful lessons can be learned by realizing
that one’s approach to the problem was wrong. Often, more
inventive thinking will result when students have hit the wall
or when their initial ideas have proven to be unsuccessful.

3.9 Model in Summary
Taking these points together creates an educational
environment in which students actively work to solve real
problems in collaborative environments. These problems will
be multi-layered and will extend beyond the life-cycle of a
single term. They will be complex and open-ended enough to
require multiple approaches, starts and stops, risk taking,
significant and real user testing, model releases, and
collaborations. Students will work on problems that they find
personally challenging and motivating. Problems will also be
complex enough to require a broad range of skills, tools,
aptitudes, and lessons that student will need to learn as they
work on the problem.

4.0 FEASIBILITY
The purpose of this paper has been to extract and explore an
education model offered by open source software
development. Although future work can address issues of
feasibility, practicality, and implementation, it should be
noted that this model is not altogether new or radical as some
may suggest. In addition, it should also be noted that this
model is quite different from “open source” models currently
proposed by projects like MIT’s open curriculum project.

4.1 Precedents in Open Source Education
Open source proponents like Torvalds and Raymond are
quick to note that this method of organizing work is not a new

35

invention, but actually derives from the ways academic
research has been structured for years. As Torvalds recently
noted, “pretty much all of modern science and technology is
founded on very similar ideals to open source” [2]. Here,
Torvalds refers to the time-honored system of research
collaborations and peer review by which academics assist
each other with their work and ensure that disciplinary work
merits sufficient quality. When examining educational theory,
one could argue that open source is more accurately the
technological implementation of John Dewey’s principles of
activity-based education. For example, Dewey argued that
“the first stage of contact” with any kind of education, from
children through adult, must be hands-on and experiential. For
Dewey, learning is a process of discovery and enactment, and
of wrestling with problems first hand [5, p.160, 167].

More recently, Roger Schank has formulated what he calls
“goal based scenarios” as a way to integrate an active
curriculum within schools. Prevalent in Accenture’s world
wide training curriculum, Schank’s methods have appealed to
both academic and corporate educators as they provide hands-
on ways for students to learn the material while at the same
time experience using their knowledge in realistic, motivating
situations. As Schank notes, his learning is directed at
combining what one knows with what one does through a
goal based scenario: “a learning-by-doing simulation in which
students pursue a goal by practicing target skills and using
relevant content knowledge to achieve their goal.” [24, p.
165]. In these contexts, students work through simulations
and receive coaching from instructors in time for them to
apply learned skills to the next event or level in the
simulation. At the conclusion of the simulation, students and
instructors reflect back on lessons learned throughout the
experience. While open source takes the simulation one step
further into real life, as an educational process, it fits well and
is consistent with other practice-based, or activity-based
methods of education. However, in this case, open source
appears to have applied these methods to a technological
context and to an educational context that is not necessarily
part of an academic, school-based curriculum.

On a different point, open source methods as described above
should not be confused with open-text or open curriculum
movements such as the policy recently announced by MIT to
place all of their teaching materials on-line. While some
proponents of this movement to place course materials on-line
align themselves with open source, an important
distinguishing feature remains that open source is a
collaborative, community-building process. In many ways,
open source is not about the data but it is about building
connections within an expert community that collaborates to
create a better product. Simply posting syllabi on-line does
not bring together peers who are intersted in learning through
problem solving any more than posting documentation (or a
table of contents) teaches people how to program a complex
piece of software. Too often, educationalists confuse process
and data. Open source is about process, posting one’s syllabi
on-line is still about data.
4.2 Crateware
As an alternative open source educational program, we at
Clarkson University are currently building an on-line resource

for university faculty to collaborate together to build on-line
courses in technical communication. We call this project
“Crateware” (www.Crateware.org) as our inspiration comes
from the modular blue crates that are used throughout
university residences as furniture, bookshelves, CD racks, and
moving crates. Crateware is both a site for free course ware
and it is a site that enables faculty to build and improve
existing courses. Following an open source model, Crateware
supports an active development community that can build on-
line curriculuar tools, improve existing tools, cases, lessons,
or assignments, or improve the larger site itself.

Crateware courses follow Dewey’s and Schank’s models of
active learning. Courses are posted as cases with data students
organize, interpret and then use to solve organizational
problems. Students solve these cases by producing
recommendations, reports, actual products, and physical
presentations in class. To assist students with their tasks the
Crateware site hosts a variety of on-line tutorials that teach
problem solving, report writing, critical thinking, analysis,
and other aptitudes students need to solve their problems
successfully and produce high quality products.

Our goals in creating Crateware are twofold: (1) to build a
free, high quality, leading edge site for technical
communications instruction that students and faculty could
use with minimal overhead and training; and (2) to build a site
where people interested and committed to technical
communications instruction could collaborate to build
leading-edge, dynamic, and useful course materials for world-
wide dissemination. While the project is still in its early
stages, we hope that it provides both a useful context for
learning about technical communication and a collaborative
process for building technical communication course
resources.

5.0 Open Source, Education, and Community
Participation
To return to the discussion that initiated this paper, I would
like to conclude by addressing some of the social aspects of
open source education. Andrew Feenberg argues that modern
democracies are currently faced with two separate paths of
developement. One path identifies citizenship as the roles
individuals play within segmented structures such as markets,
workplaces, and administrations. The other path sees
individuals as agents who can surpass these systems and are
not content to be mere players within predefined structures
[9]. He notes that the first path correlates with Lyotard’s view
of the postmodern condition which emphasizes the
rationalization and efficiency of these systems. Within this
perspective, Feenberg writes, “the tendency is to replace
human communication wherever possible by technical or
bureaucratic systems” as these sytems increase efficiency,
reduce the unexpected, and lead to more rational systems. At
the same time, these systems also lead to an enhancement of
social power by a few in the name of these increased
efficiencies [9].

The vision of the proprietary university articulated in the
introduction of this paper correlates with the rationalist

36

perspective Feenberg articulates. Such a perspective replaces
collaborative research with copyright and disclosure
restrictions. It replaces collaborative teaching with
standardized testing. And, it replaces experiential education,
discovery, and innovation, with reproduced content, static
displays, and buried technology -- answers that do not reveal
their questions, solutions that do not show their methods. In
this system, students are rationalized as part of a larger system
and they learn that success comes from learning how to
efficiently adapt and move through the system. Perhaps the
greatest damage that this model inflicts on education is the
way it isolates students from collaborative experiences and
from the collaborative nature of knowledge creation. It
teaches students that knowledge can be created and
innovation can be sparked by solitary thinkers working
independently from each other in mutually exclusive, secret,
and restricted environments.

Unfortunately, when most academics critique this model, they
confuse corporate with proprietary. In some cases, these two
entities denote similar interests and influences. However, in
other cases, corporate interests in education do not necessarily
lead to the proprietary systems Feenberg, Aronowitz, Gee,
Jarvis, and others decry [1, 11, 13]. This paper argues that an
open source educational model can build relationships
between corporate and academic interests in ways that can
benefit both contexts. In such partnerships, corporate
practitioners and academics can co-create open classroom
scenarios based on organization-specific problems, common
situations new employees face, or yet-to-be-solved problems
an organization is facing.

The open-ended nature of open source problems nicely
accomodates such partnerships and the collaborative nature of
the open source process invites input from both academic and
practitioner settings. For example, George Dvorak, a
programmer at Sun Corporation has recently argued that
ongoing open source projects can be tapped by students and
educators as forums for learning about programming, sharing
syllabi and approaches, and for reading support materials and
accessing resources {6]. But, Dvorak’s suggestion could be
pushed further. Corporate partners could supply projects or
problems for university courses. Following the open source
education model outlined above, students could work on these
problems in open source teams, potentially at several different
universities at once. By working together, posting ideas,
solutions, and progress, and receiving feedback from
corporate sponsors and faculty, the open source education
community would work through the problem and provide the
corporate sponsor with a final product. Yet, this model does
not need to be restricted to university-corporate partnerships.
Universities could also collaborate with community groups
and local agencies. Such partnerships would help to integrate
the university within its local community and would teach
students about community activism, local issues, and
community service, lessons that are rarely explored in the
proprietary university [8].

As an educational model, open source provides a unique way
to provide students with meaningful and motivational
educational projects. It also provides students and faculty with

a key way to recover the collaborative nature of knowledge
creation. Open source is as much about a process as it is about
building a successful project. By rediscovering this process of
collaborative problem based learning, we can rebuild much of
the important social infrasturcture that has been lost to
rationalist systems. At the same time, we can reintroduce
students to the concept of the research community and by
doing so, reintroduce ourselves to new methods of innovation,
knowledge creation, and inventive problem solving.

REFERENCES
[1] Aronowitz, Stanley. The Knowledge Factory: Dismantling
the Corporate University and Creating True Higher Learning.
Boston: Beacon Press, 2000.

[2] Berglund, Erik and Priestley, Michael. “Open-Source
Documentation: In Search of User-Driven, Just-in-Time
Writing. Proceedings SIGDOC 2001, 132-141.

[3] Bradford, Lawrence J., and Raines, Claire. Twenty
Something: Managing & Motivating Today’s New Work
Force. Denver: Merrill-Alexander, 1992.

[4] Business: An Open and Shut Case. (2001, May 12).
Economist 359 (8221): 67.

[5] Dewey, John. Democracy and Education. Ed. J. Boydston.
Carbondale: Southern Illinois University Press, 1985.

[6] Dvorak, George. “Collective Education”
http://www.acm.org/ubiquity/views/g_dvorak_1.html

[7] Faber, Brenton. “Gen/Ethics? Organizational Ethics and
Student and Instructor Conflict in Workplace Training.”
Technical Communication Quarterly 10 (3), 2001: 291-319.

[8] Faber, Brenton. Community Action and Organizational
Change: Image, Narrative, Identity. Carbondale: Southern
Illinois University Press, 2002.

[9] Feenberg, Andrew. Critical Theory of Technology.
Oxford: Oxford University Press, 2001.

[10] Feller, J. & Fitzgerald, B. (2000). A Framework Analysis
of the Open Source Software Development Paradigm.
Proceedings of the 21st international conference on
information systems. Atlanta, GA: Association for
Information Systems: 58-69.

[11] Gee, James Paul, Hull, Glynda, and Lankshear, Colin.
The New Work Order: Behind the Language of the New
Capitalism. Boulder Co: Westview, 1996.

[12] Hanna, Donald E. & Associates. Higher Education in an
Era of Digital Competition: Choices and Challenges.
Madison, WI: Atwood, 2000.

37

[13] Jarvis, Peter. Universities and Corporate Universities.
London: Kogan Page Limited, 2001.

[14] Johnson-Eilola, Johndan. “Open Source Basics:
Defnitions, Models, and Questions.” Proceedings SIGDOC
2002.

[15]Lerner, J., & Tirole, J. (2001). The Open Source
Movement: Key Research Questions. European Economic
Review 45, 819-26.

[16] Lyotard, Jean-Francois. The Postmodern Condition: A
Report on Knowledge trans. Geoff Bennington and Brian
Massumi. Minneapolis: University of Minnesota Press, 1979.

[17] Markus, M.L., Manville, B., and Agres, C. (2000). What
Makes a Virtual Organization Work? MIT Sloan Management
Review 42 (1): 13-26.

[18] Micklethwait, John, and Wooldridge, Adrian. A Future
Perfect: The Challenge and Hidden Promise of Globalization.
New York: Crown Business, 2000.

[19] OpenSource.org. www.opensource.org

[20] Raymond, Eric S. The Cathedral and the Bazaar.
http://www.firstmonday.dk/issues/issue3_3/raymond/

[21] Reich, Robert. The Work of Nations. New York: Random
House, 1991.

[22] Reich, Robert. The Future of Success. New York: Alfred
A. Knopf, 2001.

[23] Sauer, Geoffry. “Community, Courseware, and
Intellectual Property Law” In Chris Werry and Miranda
Mowbray (Eds) Online Communities: E-Commerce, Online

Education, and Non-Profit Online Activiites (pp. 215-238).
New York: Pearson, 2002.

[24] Schank, Roger, Berman, Tamara, and Macpherson,
Kimberli. “Learning by Doing.” Instructional-Design
Theories and Models: A New Paradigm of Instructional
Theory Volume II. Ed. Charles Reigeluth. Mahwah, NJ:
Lawrence Elrbaum Associates, 1999.

[25] Stalder, Felix, and Hirsh, Jesse. “Open Source
Intelligence.”
www.firstmonday.dk/issues/issue7_6/stalder/index/html

[26] Thau, Richard, and Heflin, Jay (Eds.). Generations
Apart: Xers vs Boomers vs the Elderly. Amherst NY:
Prometheus Books, 1997.

[27] Torvalds, Linus, and Diamond, David. Just for Fun: The
Story of an Accidental Revolution. New York: Harper
Business, 2001.

[28] Weber, Steven. “The Political Economy of Open Source
Software.” BRIE Working Paper 140 June 2000. Available
on-line at,
http://brie.berkeley.edu/~briewww/pubs/wp/wp140.pdf

[29] White, Geoffry D. (Ed.). Campus Inc.: Corporate Power
in the Ivory Tower. Amherst NY, Prometheus Books, 2000.

[30] Yamauchi, Yutaka, Yokazawa, Makoto, Shinohara
Takeshi, and Ishida, Toru. “Collaboration with Lean Media:
How Open-Source Software Succeeds. Proceedings from
ACM Conference on Computer Supported Cooperative Work
(CSCW 2000).

[31] Zuboff, Shoshana. In the Age of the Smart Machine: The
Future of Work and Power. New York, Basic Books, 1988.

38

