
A Framework of Inlining Algorithms for Mapping Dtds to
Relational Schemas.

Kwok-Bun Yue
Department of Computer

Science
University of Houston-Clear

Lake

yue@cl.uh.edu

Sreenivasan Alakappan
Department of Computer

Science
University of Houston-Clear

Lake

sreeni@digitalwitness.net

William K. Cheung
Department of Computer

Science
Hong Kong Baptist University

william@comp.hkbu.edu.hk

ABSTRACT
As XML becomes ubiquitous quickly, there is a strong need
for efficiently storing and querying XML documents. A pop-
ular approach is to store them in relational databases to take
advantage of their maturity. To reduce the number of joins
for XML querying, several inlining algorithms have been
proposed to map XML Document Type Definitions (DTD)
to relational schemas. These algorithms generally include
three steps: (1) simplify the DTD; (2) use the simplified
DTD to create a DTD graph; and (3) use the DTD graph
to generate the relational schemas. This paper makes sig-
nificant contributions to all of the three steps. We have de-
veloped and implemented: (1) a more optimal and complete
DTD simplification algorithm, (2) an algorithm for creating
a generic DTD graph that can be used as an universal basis
for inlining algorithms, and (3) a new inlining algorithm that
inlines more aggressively than existing algorithms, thus pro-
viding better potential in efficiently handling XML queries.
The new inlining algorithm also handles issues not clearly
considered by existing algorithms.

Keywords
XML, DTD, Relational Schemas, Inlining Algorithms

1. INTRODUCTION
As XML becomes ubiquitous quickly, there is a strong

need for efficiently storing and querying XML documents.
XML is essentially based on an ordered tree model, which is
unlike other popular persistent data models, such as the rela-
tional model or the object-oriented model. As a result, new
language standards, such as XPath 2.0 [15] and XQuery 1.0
[16], are being developed for querying XML documents. Ef-
fective storage of XML documents must thus take into con-
sideration of the efficient implementations of these queries.

There are two major approaches in storing XML docu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ments [1]. Native Databases (NDB), such as the open source
Apache Xindice [14], store XML documents natively as fun-
damental logical units. The second approach, XML Enabled
Database (XEDB), builds an XML layer on top of the under-
lying data model. The layer maps the storage and querying
of XML documents into the underlying database. In case of
relational databases, the XML documents are stored in rela-
tions and XML queries are mapped to SQL. One advantage
of this approach is that data can now be queried through ei-
ther XML technologies, such as XQuery, XPath and DOM,
or the underlying database technologies, such as SQL.

Research on storing XML documents into relational data-
bases (called relational schema generation in [6]) can be clas-
sified by whether the Document Type Definitions (DTDs)
are known (Schema-based or Schema-oblivious storage [6]),
and whether user input are available [2, 4]. For example, [4]
and [17] deal mostly with Schema-oblivious storage.

Inlining algorithms are a Schema-based approach for au-
tomatically storing XML documents in relational databases.
Shanmugasundaram initiated this approach by proposing
three inlining algorithms for mapping DTDs to relational
schemas [11]. These inlining algorithms use different crite-
ria to inline child XML elements into relations storing the
parent elements. Their performances have been evaluated
favorably when compared with other strategies on various
datasets [5, 13]. Based on [11], Lu proposed another new
inlining algorithm [9]. Inlining algorithms have also been
extended to handle constraints in DTD [7, 8] and preserva-
tion of XML element order [12]. Examples of other related
works include using statistics to select the lowest cost rela-
tional mapping [3] and generic query processor supporting
general relational schema generation techniques [10].

Inlining algorithms usually involve three steps to map a
DTD to relational schemas: (1) Simplifly the DTD. (2) Use
the simplified DTD to create a DTD graph. (3) Use the
DTD graph to generate the relational schemas. This pa-
per makes significant contributions to all of the three steps.
However, it does not discuss extended issues such as XML
constraints and element ordering.

1.1 Organization
Section 2 presents an optimal and complete DTD simplifi-

cation procedure. Section 3 discusses the subsequent gener-
ation of generic DTD graphs. Section 4 describes the issues
that inlining algorithms must resolve, providing a framework
to understand these algorithms. It also discusses how exist-

ing algorithms resolve them. Section 5 presents a new hybrid
inlining algorithm that is more aggressive and complete than
the existing ones. Section 6 describes a full example and we
draw our conclusions in Section 7.

2. DTD SIMPLIFICATION
Element type declarations in DTD can be constructed us-

ing parentheses and five operators: sequence (,), choice (|),
zero or one (?), one or more (+) and zero or more (*).
These declarations can be nested and complicated, for e-
xample, <!ELEMENT a (b,((b+,c)|(d,b*,c?)),(e*,f)?)>.
From the relational schema’s point of view, it is only im-
portant to store parent-child element relationship and order
information to faithfully implement XML queries. For ex-
ample, for <!ELEMENT a (b?)>, it is important for the rela-
tional schemas to provide the capability to store a child
element of <a> somewhere. Thus, the mapping algorithm
can treat the declaration as <!ELEMENT a (b)>. If is ac-
tually absent in <a>, it can still be faithfully represented in
the relation, such as by a suitable null value. Thus, the pur-
pose of DTD simplification is to reduce the complexity by re-
moving all nested parentheses and the operators +, |, and ?.
For example, <!ELEMENT a (b,((b+,c)|(d,b*,c?)),(e*,f

)?)> can be simplified to <!ELEMENT a (b*,c,d,e*,f)>.
DTD simplification procedures have been described in [4,

7, 9, 11]. However, details of these procedures are not al-
ways entirely clear in the papers. For example, even the
more recent procedure by [9] does not clearly specify when
nested parenthesis can be removed. More importantly, exist-
ing procedures do not always give the most optimal result as
they do not optimally handle the | operator. For example,
for <!ELEMENT a ((b,c)|(c,d))>, using the best existing
procedure, the following simplification occurs:

((b,c)|(c,d))

-> ((b,c),(c,d))

-> (b,c,c,d) [We add this step to remove ()]

-> (b,c*,d)

In the simplified result, <a> may contain zero or more <c>

child elements. However, in the original declaration, <a>

contains exactly one <c> child no matter which choice is
selected and thus the optimal result should be (b,c,d).

To handle this situation, we cannot simply convert all oc-
currences of the choice operator (|) to the sequence operator
(,), as in existing algorithms. Instead, operands of the | op-
erator should be compared. We define several terms before
presenting a new algorithm for DTD simplification.

Definition 1. An atom is either e or e*, where e is an
XML element.

Definition 2. A comma-separated clause is a sequence
of atoms, i.e., (a1, a2,. . . ,an), where every ai is an atom. A
comma-separated clause may contain only one atom (i.e.
n=1).

Definition 3. A minimal comma-separated clause is
a comma-separated clause where no two atoms are formed
from the same element.

Definition 4. An element e appears in a comma-separat-
ed clause c if e or e* is an atom in c. An element e appears
as e* in a comma-separated clause c if e* is an atom in c.

The following DTD simplification algorithm is based on [9].
It produces a simplified DTD such that each element decla-
ration is a minimal comma-separated clause. Simplification
rules used by the algorithm are shown in Fig.1 below. For
the rules in Fig.1, expr and expri are DTD expressions; e
is an element; a and ai are atoms; and c and ci are comma-
separated clauses.

Algorithm 1 Simplification of DTD

1: Input : A DTD D.
2: Output : The simplified DTD of D.
3: Treat #PCDATA as a special child element.
4: for all DTD expressions of element declarations in D

do
5: Removal of +: Apply rule R1 recursively until the

expression contains no +;
6: Removal of ?: Apply rule R2 recursively until the ex-

pression contains no ?;
7: Production of comma-separated clauses : Apply rules

R3 to R6 recursively until the expression is a comma-
separated clause;

8: Removal of redundant atoms: Apply rule R7 re-
cursively until the expression is a minimal comma-
separated clause;

9: end for

(R1) expr+ → expr ∗
(R2) expr? → expr
(R3) (a) (c1|c2| . . . |cn) → (c) such that
(i) an element e appears in c if and only if e appears
in at least one ci, and (ii) an element e appears as e∗ in
c if and only if e appears in at least one ci as e∗.

(b) . . . |expr1|(a1|a2| . . . |an)|expr2| · · · →
. . . |expr1|a1|a2| . . . |an|expr2| . . .
(R4) (a) (a1, a2, . . . , an)∗ → (a1∗, a2∗, . . . , an∗)

(b) . . . , expr1, (a1, a2, . . . , an), expr2, · · · →
. . . , expr1, a1, a2, . . . , an, expr2, . . .
(R5) a ∗ ∗ → a ∗
(R6) ((expr)) → (expr)
(R7) (a) . . . , e, . . . , e, · · · → . . . , e∗, . . .

(b) . . . , e, . . . , e∗, · · · → . . . , e∗, . . .
(c) . . . , e∗, . . . , e, · · · → . . . , e∗, . . .
(d) . . . , e∗, . . . , e∗, · · · → . . . , e∗, . . .

Figure 1: DTD Simplification Rules.

Note 1. Rule R3(a) is the new rule for comparing the
operands of an | operator to ensure that the optimal atom is
used. Furthermore, there is no rule for (expr1|expr2|. . . |
exprn)*, where every expri is a general DTD expression.
Rules R3 to R6 must be applied recursively to simplify the
DTD expressions to comma-separated clauses before rule
R4(a) can be applied.

The following example illustrates the simplification action
of Algorithm 1:

(b?,((b+,c,d)|(c?,(d|(e*,f))+))

-> (b?,((b*,c,d)|(c?,(d|(e*,f))*)) [Rule R1]

-> (b,((b*,c,d)|(c,(d|(e*,f))*)) [Rule R2]

-> (b,((b*,c,d)|(c,((d,e*,f))*)) [Rule R3(a)]

-> (b,((b*,c,d)|(c,(d,e*,f)*)) [Rule R6]

-> (b,((b*,c,d)|(c,(d*,e**,f*))) [Rule R4(a)]

-> (b,((b*,c,d)|(c, d*,e*,f*))) [Rule R5]

-> (b,(b*,c,d*,e*,f*)) [Rule R3(a)]

-> (b,b*,c,d*,e*,f*) [Rule R4(b)]

-> (b*,c,d*,e*,f*) [Rule R7(b)]

We have the following theorems on the properties and
complexity of Algorithm 1.

Theorem 1. Algorithm 1 is complete in the sense that it
will handle all DTD cases and will produce minimal comma-
separated clauses for all element declarations.

Proof. The theorem is obvious since there are applicable
rules for handling every operator until the DTD is simplified
into comma-separated clauses.

Theorem 2. Algorithm 1 is optimal in the sense that
it will not include any atom e∗ in any resulting minimal
comma-separated clauses if e is sufficient.

Proof. It is only necessary to consider rule (7a), since of
all rules with * in the right hand side, only rule (7a) has no
+ or * in the left hand side. Since rule (7a) has at least two
occurrences of the element e in the left hand side, it is not op-
timal only if a superfluous occurrence of e can be generated
by other rules. Careful examinations of all rules will indi-
cate that no rule will generate a superfluous element. This
includes rule (3a), which is carefully constructed to avoid
generation of superfluous element for the | operator.

Theorem 3. The worst case time complexity of Algo-
rithm 1 is O(N2

op), where Nop is the total number of op-
erators, including parentheses, in the DTD.

Proof. Every occurrrence of ?, +, *, | and () can be
removed by the application of exactly one rule, except when
Rule 4(a) is applicable. Each application of Rule 4(a) can
generate at most Nop-1 * and the rule can only be applied
for less than Nop times since it removes a pair of parentheses
(counted as an operator).

3. DTD GRAPHS
Before generating the relational schemas, most existing in-

lining algorithms include a further step of generating DTD
graphs from the simplified DTDs. These DTD graphs do
not only assist in constructing the eventual mapping by pro-
viding a familiar data structure to represent the simplified
DTD. They may also incorporate inlining criteria to deter-
mine when inlining should occur, such as [9]. However, the
dual purpose of representing the DTD and incorporating in-
lining criteria may result in added complexity and decreased
universality (one DTD graph cannot be used by another in-
lining algorithm). We propose to decouple the representa-
tion from the inlining criteria. Algorithm 2 generates generic
DTD graphs that can serve as the universal basis of inlining
algorithms. This generic DTD graph is simply a graphical
representation of the simplified DTDs without considering
any inlining criteria.

Note 2. o-edges are called ,-edges in [9]. Since “,” may
be confused with the sequence operator, we select to use the
term o-edges, to indicate that the child element can appear
within the parent element at most one time, as opposed to
many times for *-edges.

Algorithm 2 Generation of DTD Graphs

1: Input : A simplified DTD D.
2: Output : G, the DTD Graph of D.
3: Create a node in G for each element in D;
4: for all element p of D that does not contain only #PC-

DATA do
5: for all child element e (including #PCDATA) of p

do
6: if e appears as e* in the declaration of p then
7: add to G an *-edge from p to e;
8: else
9: add to G an o-edge from p to e;

10: end if
11: end for
12: end for

Definition 5. The in-degree of a node in a DTD graph
is the number of incoming edges to the node.

Note 3. The in-degree of a node is thus the number of
times the element appears in the declarations of other ele-
ments, or the number of parent element types.

Theorem 4. The time complexity of Algorithm 2 is O(Ne

+ Nec) where Ne and Nec are the total number of all element
declarations and the total number of parent child relationship
in these element declarations (edges) respectively.

Proof. The theorem is obvious since each element and
each child element in its declaration is visited exactly once.

4. INLINING CONSIDERATIONS
Different inlining algorithms have different criteria for in-

lining descendant elements. However, there are common
issues concerning all inlining algorithms and they will be
discussed here. We will also discuss how three existing in-
lining algorithms (SHARED [11], HYBRID [11] and LU [9])
resolve these issues. There also exist other inlining algo-
rithms which are however either not complete enough (such
as BASIC [11]) or very similar to one of these three algo-
rithms (such as [7, 8]).

A naive approach for mapping DTDs to relational schemas
is to convert every XML element to a unique relation. How-
ever, as [11] has pointed out, this naive approach will likely
lead to excessive fragmentation of the XML document.

Example 1. Consider the following simple partial DTD
declarations:

<!ELEMENT a (b)>

<!ELEMENT b (c)>

<!ELEMENT c (d)>

<!ELEMENT d (#PCDATA)>

The naive approach will create four relations: a, b, c and
d. An XML query for the entire content of the element <a>

will require the joining of all four relations.
The basic idea of inlining algorithms is to store some de-

scendent elements into the relation of an element. In the
example above, inlining the elements , <c> and <d> into
the relation a will thus result in only one relation. No join
will then be necessary to query the content of <a>.

There are common features of existing algorithms.

1. An element with in-degree=1 (exactly one incoming
o-edge) is inlined into its parent element, which may
in turn be inlined.

2. An element with in-degree=0 has its own relation.

3. A surrogate primary key is created for every relation.

The following subsections discuss four common issues in
detail: XML root elements, multiple occurrences, multiple
parent element types and recursions. Shanmugasundaram
et. al. have briefly discussed multiple occurrences (as set-
value attributes) and recursions in [11].

4.1 XML Root Element
DTD does not specify the root elements of the XML doc-

uments it validates.

Example 2. Consider the DTD:

<!ELEMENT a (b)>

<!ELEMENT b (#PCDATA)>

The DTD can be used to validate XML documents with root
elements <a> or . If inlining is used, a naive relational
schema may contain only one relation a(a id, a.b), where the
data content is stored in a.b. It is then necessary to have a
mechanism to specify whether a or b is the root of a given
XML document. This is accomplished by using a Boolean
column isroot in SHARED and HYBRID, and an integer
column nodetype in LU. Note that we use the term column
instead of the more formal term attribute in relations to
avoid confusion with XML attributes.

4.2 Multiple Occurrences
This correspond to elements with incoming *-edges in our

formalism. If an element has multiple child elements of the
same type, it should not be inlined since relations do not
accept set-value columns. To circumvent this mismatch be-
tween the XML and the relational data models, it is neces-
sary for inlining algorithms to store the child elements in a
separate relation.

Inlining algorithms may differ in how the parent child re-
lationship is stored. Both SHARED and HYBRID store
the parent element id as a foreign key in the child relation.
In LU, a single relation edge(parentID,childID,parentType,
childType) stores all relationships between any two XML
elements [9].

Example 3. Consider the DTD:

<!ELEMENT a (b*)>

<!ELEMENT b (c*)>

<!ELEMENT c (#PCDATA)>

Both SHARED and HYBRID generate relations similar to
a(aID), b(bID, b.parentID) and c(cID,c,c.parentID). On the
other hand, LU generates relations similar to a(ID),b(ID) (a
and b will actually be coalesced into one relation), c(ID, PC-
DATA) and edge(parentID,childID,parentType,childType).

In [9], the use of a separate relation is proposed to store
many-to-many relationships. However, since the parent-to-
child relationships in XML documents are one-to-many, we
do not see any advantage for doing so. More details along
this line of discussion can be found in [18].

4.3 Multiple Parent Element Types
This issue occurs when an element node in a DTD graph

has an in-degree > 1. If the element has an incoming *-edge,
a separate relation should have already been created for it
(see the previous subsection). Thus, it is only necessary to
consider the case when all incoming edges to the element are
o-edges. In this case, either a separate relation or inlining
can be used to store the element.

SHARED generates a relation for every such element e
with in-degree > 1. The column e.parentID is added to
specify its parent. Since e may have parents of different
types, an additional column e.parentCode is used to spec-
ify the parent’s element type. LU also generates a relation
for e. However, since there is a separate relation, edge, to
store parent and child relationships, no additional column is
needed. HYBRID inlines e into its parents if there is no re-
cursion. The following example illustrates their differences.

Example 4. Consider the DTD:

<!ELEMENT a (c)>

<!ELEMENT b (c)>

<!ELEMENT c (#PCDATA)>

SHARED generates the relations a(aID), b(bID) and c(cID,
c,c.parentID,c.parentCode). LU generates relations similar
to a(ID), b(ID), c(ID,PCDATA) and edge(parentID,childID,
parentType,childType). HYBRID generates the relations-
a(aID, c,c.isroot) and b(bID,c,c.isroot).

As pointed out in [11], the performance of HYBRID in query
processing is generally better than that of SHARED. How-
ever, there remains an unanswered problem in HYBRID re-
garding where the element <c> should be stored if it happens
to be the root element of an XML document (in relation a
or b?). For our new inlining algorithm to be discussed in
the next section, we propose to create a separate relation,
c, for <c> just for documents with <c> as the root elements.

4.4 Recursion
Recursions occur in DTDs when there exist elements that

may be descendants of each other.

Example 5. DTD with a cycle of o-edges:

<!ELEMENT a (b?)>

<!ELEMENT b (a)>

Recursion has not been handled entirely satisfactory in ex-
isting work. LU assumes that in order for a DTD to be
consistent (i.e., all validated XML documents have finite
sizes), a cycle in a DTD graph could not be composed of
o-edges entirely and should contain at least one *-edge. If
this were true, a relation will be created for the *-edge and
LU does not consider handling cycles with all elements of in-
degree=1. However, Example 5 serves as a counter example
to this argument.

SHARED and HYBRID check only mutually recursive el-
ements all having in-degree=1, creating a separate relation
for one of them. However, this is still not sufficient since
recursive elements may all have in-degree > 1 and recursion
may also interfere with the issue of multiple parent element
types. Please see [18] for futher elaboration. A more clear
and accurate set of rules for recursion is needed.

5. A NEW INLINING ALGORITHM
In this section, we present a new inlining algorithm (Al-

gorithm 3) that completely addresses all the issues we have
mentioned in the previous sections. Algorithm 3 adopts
some of the best practices from existing algorithms, but also
proposes new solutions and clarifies ambiguity in other as-
pects. In particulars, it inlines more aggressively than any
existing algorithms, thus providing better potential in effi-
ciently handling XML queries. The basic inlining criteria of
Algorithm 3 as compared to others are listed below:

1. SHARED and LU: An element with in-degree of 1
through an o-edge is inlined to its sole parent.

2. HYBRID: An element with in-degree >= 1 and with
no incoming *-edge is inlined to all its parents. An
element with an incoming *-edge is not inlined.

3. Algorithm 3: An element with in-degree >= 1 is inlined
to all its parents that have an o-edge to the element.

Example 6. Consider the DTD:

<!ELEMENT a (c)>

<!ELEMENT b (c,d)>

<!ELEMENT c (#PCDATA)>

<!ELEMENT e (d*)>

<!ELEMENT d (#PCDATA)>

SHARED and LU do not inline any element. HYBRID in-
lines c to both a and b. Algorithm 3 inlines c to a and b,
and d to b.

Algorithm 3 CreateRelationalSchemas(D): create the rela-
tional schemas for a DTD D
1: Input : A DTD D and its associated DTD graph G.
2: Output : The relational schemas for D.
3: if the node #PCDATA is in G then
4: Create the relation $PCDATA($ID, $data, $parentID,

$parentType) with the primary key $ID;
5: end if
6: for all e that is a child element with an incoming *-edge

in G do
7: CreateRelation(e);
8: Add the columns e + “.$parentID” and e +

“.$parentType” to the relation e;
9: // + is the string concatenation operator.

10: end for
11: for all element e that has in-degree=0 in G do
12: CreateRelation(e);
13: end for
14: for all element e that has more than one incoming o-

edges in G do
15: CreateRelation(e);
16: end for
17: for all cycle that composes only of o-edges in G do
18: if no relation has already been created for any element

in the cycle then
19: CreateRelation(one of the elements in the cycle);
20: end if
21: end for

In line 4 of Algorithm 3, a generic relation, $PCDATA, is
created to store PCDATA contents of elements with mixed

contents. The columns $parentID and $parentType store
the ID and types of the elements respectively. Since $ is not
allowed in XML names, the prefix $ creates a ‘namespace’
for special columns to avoid potential ambiguity.

Lines 6 to 10 handle multiple occurrences by creating re-
lations for such elements and adding columns to point to
their parents. Lines 11 to 13 create relations for elements
with in-degree=0. Lines 14 to 16 resolve the problem of
multiple parent element types in HYBRID, as discussed in
Section 4.4. When an element has more than one incoming
o-edges, a relation is created to store the element if and only
if it is the root element of the XML document. It increases
the number of relations but not the storage size or query
performance. Elements with exactly one incoming o-edge
are inlined and no relations are created for them.

Lines 17 to 21 handle recursive elements completely since
all cycles are considered, not limited to those of in-degree=1.
Recursive elements are left unmarked by the CreateRelation
procedure, and finding them takes linear time.

Algorithm 4 basically uses a breadth-first traversal of an
element and all of its descendants to create a relation and
add their contents as columns. In case a back edge is found,
columns pointing to the parent node from the back node
are ensured to be added. The variable visitedNodes is used
to remember all the visited nodes with full paths. These
nodes can then be used for detecting back edges and as
prefixes of pointers to parents. When a new node is visited,
the full path is added to the node before it is enqueued to
nodesToTraverse.

Algorithm 5 handles the cases when the element content
is #PCDATA, ANY or EMPTY, which are not completely
considered by existing algorithms. See [18] for more details.

Algorithm 4 CreateRelation(e): Create the relation e for
the element e
1: Input : An element e.
2: Output : The relational schema e for the element.
3: Create a relation e with the primary key e.$ID;
4: nodesToTraverse ← {e};
5: visitedNodes ← ∅;
6: if there is at least one outgoing o-edge from e then
7: Add the column e + “.$nodeType”;
8: end if
9: while nodesToTraverse 6= ∅ do

10: currentNode ← dequeue(nodesToTraverse);
11: visitedNodes ← visitedNodes ∪ {currentNode};
12: AddColumns(e, currentNode);
13: for all outgoing o-edge from currentNode =

(currentNode, c) do
14: if c does not appear in visitedNodes then
15: // Add the child node with the full path.
16: enqueue(nodesToTraverse, currentNode+“.”+

c);
17: else
18: // A back edge to a previously visited node.
19: Let fullPathC in visitedNodes be the same

node as c but with full path;
20: Add the columns fullPathC+“.$parentID” and

fullPathC+ “.$parentType” to the relation e if
they have not been added;

21: end if
22: end for
23: end while

Algorithm 5 AddColumns(e,currentNode): Add the con-
tent of currentNode, not including its descendants, to the
relation e
1: Input : The relation e and an element node currentNode
2: Output : The content of currentNode (#PCDATA and

attributes) is added to e.
3: for all attribute attr of currentNode do
4: add the column currentNode + “.” + attr to the rela-

tion e;
5: end for
6: if currentNode is of the type #PCDATA or ANY then
7: add the column currentNode to the relation e;
8: end if
9: if currentNode is of the type EMPTY then

10: add the column currentNode + “.$exists” to the re-
lation e;

11: end if

The following theorems specify some properties and the
time complexity of Algorithm 3.

Theorem 5. The total number of relational schemas cre-
ated is less than or equal to Ne+1, where Ne is the total
number of element declarations in the DTD.

Proof. Examination of Algorithm 3 indicates that for a
given element e, exactly one relation will be created for e by
calling the procedure CreateRelation(e) if e has no incoming
edge or e has an incoming *-edge. A relation may not be
created for e if it has only o-edges. We add one to the bound
for the creation of the relation $PCDATA. A corollary of

this theorem is that CreateRelation will be called at most
Ne times.

Theorem 6. The worst case time complexity of Algo-
rithm 3 is bounded by O(Ne ∗ (Ne + Na)) where Na is the
total number of attributes.

Proof. The procedure CreateRelation (Algorithm 4) is
called at most Ne times, The only non-constant part of Cre-
ateRelation is the while loop in line 9, which will execute at
most Ne times. Within the for loop, lines 10 and 11 take
constant time. Time for line 12 will depend on the number
of the attributes. Since each edge is visited at most once,
the cumulative number of iterations of the for loop starting
in line 13 is limited by the number of edges in the graph.
Hence, the while loop has a time complexity of O(Ne +
Na).

To summarize, Algorithm 3 contributes in several areas:

1. Aggressiveness: It is more aggressive in inlining than
existing algorithms.

2. Completeness: It handle recursion, #PCDATA, ANY
and EMPTY completely and explicitly.

3. Clarity : It provides more lower level implementation
details, reducing ambiguity.

6. A FULL EXAMPLE
A full example is presented in this section. Consider the

following DTD:

<!ELEMENT a ((b,c*)|(c,b))>

<!ELEMENT b (f)>

<!ELEMENT c (#PCDATA|g)*>

<!ELEMENT d (e)>

<!ELEMENT e (b,d?)>

<!ELEMENT f (EMPTY)>

<!ELEMENT g (#PCDATA)>

<!ELEMENT h (c)>

<!ATTLIST b p CDATA #REQUIRED>

<!ATTLIST e q CDATA #REQUIRED>

Algorithm 1 simplifies only elements a, c and e to:

<!ELEMENT a (b,c*)>

<!ELEMENT c (#PCDATA*,g*)>

<!ELEMENT e (b,d)>

Due to the limited space, we skip the straightforward
DTD graph generated by Algorithm 2. More details and
other examples can be found in [18]. Algorithm 3 creates
the following relational schemas.

$PCDATA($ID,$data,$parentID,$parentType)

a(a.$ID,a.b.p,a.b.f.$exists,a.$nodeType)

b(b.$ID,b.p,b.f.$exists,b.$nodeType)

c(c.$ID,c.$parentID,c.$parentType)

d(d.$ID,d.e.q,d.e.b.p,d.e.b.f.$exists,d.$nodeType,

d.$parentID,d.$parentType)

g(g.$ID,g,g.$parentID,g.$parentType)

h(h.$ID,h.$nodeType)

7. FUTURE WORK AND CONCLUSIONS
This paper contributes to the development of inlining al-

gorithms by presenting a complete and optimal algorithm
for simplifying DTDs, an algorithm for creating a generic
DTD graph, a framework of issues for constructing inlining
algorithms, and a newly proposed inlining algorithm that is
more complete and aggressive. These algorithms have been
implemented using Java’s JDK 1.4 and tested with about
30 DTD test cases with expected results. In the future, we
will perform a comparative performance evaluation of query
processing of the new algorithm. We will also explore to
extend the algorithm to map XML Schema and handle such
issues as element ordering and XML constraints.

8. REFERENCES
[1] S. W. Ambler. Agile Database Techniques. John Wiley

& Sons, New Jersey, 2003.

[2] E. Bertino and B. Catania. Integrating xml and
databases. IEEE Internet Computing, 5(4):84–88,
2001.

[3] P. Bohannon, J. Freire, P. Roy, and J. Simon. From
xml schema to relations: A cost-based approach to
xml storage. In 18th International Conference on Data
Engineering (ICDE’02), page 64. IEEE Computer
Society, February 2002.

[4] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with stored. In SIGMOD ’99:
Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, pages 431–442.
ACM Press, 1999.

[5] D. Florescu and D. Kossmann. A performance
evaluation of alternative mapping schemes for storing
xml data in a relational database. INRIA Technical
Report, 1(3), May 1999.

[6] R. Krishnamurthy, R. Kaushik, and J. F. Naughton.
Xml-to-sql query translation literature: The state of
the art and open problems. In Lecture Notes in
Computer Science, Vol. 2824, pages 1–18.
Springer-Verlag, September 2003.

[7] D. Lee and W. W. Chu. Cpi. constraint-preserving
inlining algorithm for mapping xml dtd to relational
schema. Data and Knowledge Engineering, 39:3–25,
2001.

[8] D. Lee, M. Mani, and W. W. Chu. Schema conversion
methods between xml and relational models.
Knowledge Transformation for the Semantic Web,
pages 11–17, 2003.

[9] S. Lu, Y. Sun, M. Atay, and F. Fotouhi. A new
inlining algorithm for mapping xml dtds to relational
schemas. In ER (Workshops), pages 366–377, 2003.

[10] J. Shanmugasundaram, E. Shekita, J. Kiernan,
R. Krishnamurthy, E. Viglas, J. Naughton, and
I. Tatarinov. A general technique for querying xml
documents using a relational database system.
SIGMOD Rec., 30(3):20–26, 2001.

[11] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
databases for querying xml documents: Limitations
and opportunities. In VLDB’99, pages 302–314.
Morgan Kaufmann, 1999.

[12] I. Tatarinov, S. D. Viglas, K. Beyer,
J. Shanmugasundaram, E. Shekita, and C. Zhang.

Storing and querying ordered xml using a relational
database system. In SIGMOD ’02, pages 204–215.
ACM Press, 2002.

[13] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The
design and performance evaluation of alternative xml
storage strategies. SIGMOD Rec., 31(1):5–10, 2002.

[14] A. Xindice. Apache xindice.
http://xml.apache.org/xindice.

[15] Xml path language (xpath) 2.0 w3c working draft
(2003). http://www.w3.org/TR/xpath20.

[16] Xquery 1.0: An xml query language w3c working draft
(2003). http://www.w3.org/TR/xquery.

[17] M. Yoshikawa, T. Amagasa, T. Shimura, and
S. Uemura. Xrel: a path-based approach to storage
and retrieval of xml documents using relational
databases. ACM Trans. Inter. Tech., 1(1):110–141,
2001.

[18] K. B. Yue, S. Alakappan, and W. K. Cheung. A
framework of inlining algorithms for mapping dtds to
relational schemas. 2005.
http://dcm.cl.uh.edu/yue/papers/inline.pdf.

