
Analysis and Metrics of XML Schema

Andrew McDowell
University of Houston-

Clear Lake
andrew@rendai.com

Chris Schmidt
University of Houston-

Clear Lake
chris@rendai.com

Kwok-Bun Yue
University of Houston-

Clear Lake
yue@cl.uh.edu

Abstract

Despite the ubiquity of XML, research in metrics

for XML documents is scarce. This paper proposes and
discusses eleven metrics to measure the quality and
complexity of XML Schema and conforming XML
documents. To provide an easy view of these metrics,
two composite indices have been defined to measure
quality and complexity. An open source metric
analyzer tool for XML Schema has been developed.
The tool can easily be extended to add new metrics and
alter the composition of the indices to best fit the
requirements of a given application.

1. Introduction and Related Work

Research of metrics for XML documents is scarce.
There has been considerable research done with
respect to improving quality in the software
engineering process and discovering best practices for
knowledge and data capture. Yet, very little has been
done to determine how certain artifacts, like XML
documents, fit into a mature development process that
consistently produces high quality products. The most
pertinent research that has been done was by Klettke,
Schneider, and Heuer [1]. In it, they developed a set
of five metrics for Document Type Definition (DTD)
documents to glean some measure of the complexity of
XML documents. This was an important first step in
XML metric research, but it focused mainly on
complexity, and not quality. In this paper, we expand
upon this research by analyzing metrics for XML
Schema, which is a more descriptive language than
DTD for describing the vocabularies of XML
documents. We propose eleven metrics for XML
Schema and devise two simple formulae that use them
to compute complexity and quality indices.

There is also a need to validate the metric research in
a practical manner. Thus, a separate activity was done

to create an open source metric analyzer of XML
Schema. The tool was designed to be flexible in order
to easily add new metrics and reformulate the quality
and complexity indices. It has been used to generate
metrics for a representative collection of XML
Schemas.

This paper is divided into seven sections. Sections
two and three provide the motivation for research on
XML Schema metrics. The fourth section enumerates
the eleven metrics identified, followed by an
explanation of the formulae created for the indices in
the fifth section. The sixth section discusses the XML
Schema metric analyzer. Finally, the last section
covers future research that should be done to provide
additional insight into this field.

2. The Need for Metrics

DeMarco stated that one cannot control something

that cannot be measured [2]. Software quality is an
elusive goal that both the research community and the
industry strive for. Yet, the term ‘quality’ is vague and
can mean different things to different people. In 1983,
the Software Engineering Technical committee of the
IEEE Computer Society defined quality as “the degree
to which software possesses a desired combination of
attributes” [3]. Later, the International Standards
Organization (ISO) defined quality in ISO standard
9126 as a collection of items in a ‘quality model’ [4].
This model is broken up into six components, each
with multiple subcomponents: functionality, reliability,
usability, efficiency, maintainability, and portability.
The categorical definition of quality by the ISO
committee better describes the different facets of
quality and how different stakeholders define it during
the software process. Nonetheless, the vagueness of
‘quality’ has hampered the ability of researchers and
corporations alike to build software effectively.

Software metrics can fill the need for measuring the
state of software to help control it better. They are

mailto:andrew@rendai.com
mailto:chris@rendai.com
mailto:yue@cl.uh.edu

defined as the measurement of aspects of software
construction and testing that result in an ability to
describe the quality, cost and value of the software.
Harter and Slaughter posit that there is evidence that
ensuring high quality in all phases of software
development will result in a higher quality product [5].
By using metrics as a tool to increase quality during
the implementation phase, it should be possible to
ensure an overall increase in quality for the product.

While Klettke’s paper on XML metrics focused on
the complexity of elements and their relationship in
DTDs, we expanded on their work to also measure
quality. This was done by identifying characteristics
that helped or hindered the overall quality of XML
Schemas.

3. The Need for XML Schema Metrics

In recent years, XML has become a cornerstone of

many software applications. XML documents are used
for knowledge and data capture. Poor design of XML
documents can hinder the ability to effectively use the
data. For example, if the XML document is used as an
internal format to support the software infrastructure, a
poor schema can affect the overall quality of the
product. If the XML document is used to store or
consume data, then the software handling the
document may not be affected, but the net result to
users of the product may be that they will get inferior
data. In both cases, improving the quality can
potentially improve the quality of the software product
and/or the quality of the end user’s interaction with the
product.

XML documents are often used as a communication
medium between parties. If the XML data being
passed between groups conforms to a common
schema, then this schema can be considered a contract.
This contract carries a heavy burden since both parties
can have products or applications that use the XML
data. It is beneficial to have a highly flexible and
easily maintained schema to minimize the changes
necessary for the end products or applications.

The above examples are all valid reasons why a high
quality schema for XML documents is necessary.
When choosing a schema language, you have two
main choices: DTD and XML Schema. XML Schema
is gaining popularity due to its powerful capabilities.
It contains many features missing in DTDs, such as
custom data types, object-oriented features and
structured documentation [6]. It is generally agreed
that XML Schema is the schema language of the future
for XML. Thus, we chose to focus this paper on the
quality measurement of XML Schema documents and

the complexity measurement of conforming XML
documents.

Even though XML and XML Schema documents
usually only make up a small fraction of a software
product, their influence on the overall quality of the
software can be large. XML metrics are important
components of the overall metrics for predicting
quality and complexity of the software development
process.

4. XML Schema Metrics

Our proposed XML Schema metrics are based on the

five complexity metrics enumerated by Klettke et. al.
[1]. When developing the metrics, we also focused on
the categories of the ISO 9126 quality model. Since
our goal was to build an XML metric analyzer tool that
can be easily configured to add new metrics and
remove existing metrics, these metrics were not
designed to be comprehensive. Instead, additional
metrics can be supplemented to the identified metrics
on a per business case basis.

Klettke, et. al. focused on measuring complexity of

DTD. Our metrics expand on their work in two
directions:

(1) Metrics that measure the quality of XML

Schema. For example, unlike DTD, there is an
element called annotation to allow formal
documentation of the XML Schema. Thus, the
abundance of the annotation element is usually
a good indicator that the XML Schema is well
documented and easy to read and maintain.

(2) Metrics that exploit advanced features of XML
Schema. For example, unlike DTD, XML
Schema allows the definition of user-defined
types. Their use may affect both quality and
complexity.

In this section we present eleven proposed metrics

and use the example libraryexample.xsd in Figure 1 to
illustrate them. The XML Schema libraryexample.xsd
captures a simplified library structure and is used
because it contains many of the common XML Schema
features pertinent to our discussion.

<?xml version="1.0"?>
<xsd:schema
 targetNamespace=
 "http://examples.org/schemaExample"
 xmlns:xsd=
 "http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 This is an example XML Schema for a
 simple library.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType name="string32">
 <xsd:restriction base="xsd:token">
 <xsd:maxLength value="32"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="bookType">
 <xsd:sequence>
 <xsd:element name="title"
 type="string32"/>
 <xsd:element name="author"
 type="xsd:string"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="isbn"
 type="xsd:string"/>
 </xsd:complexType>
 <xsd:complexType name=”libraryBookType”>
 <xsd:complexContent>
 <xsd:extension base=”bookType”>
 <xsd:attribute name=”deweyDecimalNumber”
 type=”xsd:string”/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="book"
 type="libraryBookType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Figure 1. A sample XML Schema, libraryexample.xsd

4.1 Number of Complex Type Declarations
XML Schema allows the definitions of complex types
and simple types. Complex types allow elements in
their contents and can have attributes. They are used
to define elements with child elements in their content
models. As a result, more complex types usually
indicate more complex XML structures. Both globally
defined and locally defined complex types are counted.
This can be further broken down into three
subcategories: Text-only, Element-only and Mixed-

Content (may contain both text and child elements.)
There are three complex types in libraryexample.xsd:
the global types bookType and libraryBookType, and
the anonymous complex type defined locally within
the library element.

4.2 Number of Simple Type Declarations
Simple types only allow values. They can either be
predefined or user-defined. User-defined simple types
derive from their parent types by restriction, in order to
limit their content. This metric counts the number of
user-defined simple type declarations. In
libraryexample.xsd, there is one user-defined simple
type declaration named string32. This simple type is
based on the built-in token type with the restriction that
the value of the element is at most 32 characters.

4.3 Number of Annotations
The annotation element in XML Schema allows
documentation for the benefit of both human readers
and applications. The element may contain document
elements (for human readers) and appInfo elements
(for applications). Having more annotation elements
present in the XML Schema document usually imply
that the XML Schema is better documented. Thus,
there is a higher chance that the overall quality is
better. In libraryexample.xsd, there is only a single
annotation element.

4.4 Number of Derived Complex Types
Complex types can be derived from other complex
types or simple types by either expanding or restricting
the definitions of their parent types. Derivation of data
types is a feature that is not present in DTDs. This can
be a very useful feature, which adds flexibility and
reusability, but also increases complexity. In
libraryexample.xsd, there is one derived complex type,
libraryBookType, which extends the bookType
complex type by adding the deweyDecimalNumber
attribute.

4.5 Average Number of Attributes per Complex
Type Declaration
Complex types may have zero or more attributes
defined. This metric measures the average number of
attributes of the complex types defined within the
XML Schema document. This is calculated by
dividing the total number of attributes in all complex
type declarations, including any attributes that may be
inherited from parent type declarations, by the total
number of complex type declarations. Of course, this
metric is only applicable when there is at least one
complex type declaration. In libraryexample.xsd, there
are three complex type declarations: bookType has a

single attribute isbn; libraryBookType has two
attributes, deweyDecimalNumber and isbn; the
anonymous complex type declared within the library
element has no attributes. Since libraryBookType
derives from bookType, isbn is included as an attribute
for both complex type declarations. This gives an
average attribute per complex type declaration of 1.0.

4.6 Number of Global Type Declarations
Type declarations, simple and complex, can be defined
at the top level of an XML Schema document. The
advantage of using global types is reduced redundancy
since elements of the same type can refer to the global
type instead of each having a local declaration. In
libraryexample.xsd, there is one simple global type,
string32, and two complex global types, bookType and
libraryBookType.

4.7 Number of Global Type References
Every element declared within an XML Schema
document must specify its type. This type may be a
built-in simple type, a type defined within the
element’s body, or a reference to a user-defined global
type. This metric measures the number of elements
that specify global types as their element types. The
ratio of global type references to the number of global
type declarations is a good measure of quality, where
higher is better. If it is smaller than 1, some global type
declarations are not even being used. In
libraryexample.xsd, the title element refers to the
global type string32 and the book element refers to the
global type libraryBookType.

4.8 Number of Unbounded Elements
Every XML Schema element has attributes called
minOccurs and maxOccurs. The values for these
attributes specify how many times the element can
occur in a conforming XML document. One possible
value for the maxOccurs attribute is “unbounded”,
which means the element may appear any number of
times. This metric measures the number of elements
that have “unbounded” specified as the value for its
maxOccurs attribute. Having unbounded elements can
greatly increase the complexity of conforming XML
documents since having even a single unbounded
element allows the XML document to become
infinitely large. In libraryexample.xsd, elements
author and book are unbounded elements.

4.9 Average Bounded Element Multiplicity Size
The range of the multiplicity of an element is bounded
by the minOccurs and maxOccurs attributes. The size
of this range for a bounded element, called multiplicity
size here, is equal to (maxOccurs – minOccurs + 1).

This metric measures the average multiplicity size of
all bounded elements. The default value for both
maxOccurs and minOccurs attributes is one.
Therefore, if an element does not specify either
attribute, its multiplicity size is one. Similar to
“unbounded” elements, elements with a high value in
multiplicity size can add to the complexity of
conforming XML documents. Neither of the two
bounded elements in libraryexample.xsd, library and
title, specify a value for maxOccurs or minOccurs
attributes, so the average multiplicity size is 1.0.

4.10 Average Number of Restrictions per Simple
Type Declaration
Every simple type is a restriction of another simple
type. This metric measures the average number of
restrictions placed on all of the simple type
declarations within the XML Schema document.
Having more restrictions on a type reduces the range
of valid values for the type, thus reducing the
complexity of the XML document. However, some
restrictions, such as enumeration, are more restrictive
than others. Having more restrictions does not always
produce a smaller set of values. On the other hand,
having more restrictions may mean the authors have
spent more effort to apply domain constraints, a sign of
good quality. In libraryexample.xsd, there is only one
simple type defined, string32, which has a single
restriction.

4.11 Element Fanning

Element Fanning is a composite of two metrics
defined for DTDs in [1]: Fan-In and Fan-Out. In XML
Schema terms, Fan-Out is the number of child
elements that an element has. The other metric, Fan-
In, measures how many times an element is referenced
within the XML Schema document.

It is easier to understand this metric by modeling the
XML Schema document as a graph. A node is an
element and an edge is a parent-child relationship in
element declarations. Fan-In and Fan-Out of an
element are the number of incoming and outgoing
edges of the corresponding node respectively.

In libraryexample.xsd, the Fan-In of the elements
library, book, title and author are 0, 1, 1 and 1
respectively. Their Fan-Out values are 1, 2, 0 and 0.

Element Fanning is the average Fan-In and Fan-Out
for all elements in the XML Schema document. It
does not matter which is used for the average since the
average Fan-In will always equal the average Fan-Out.
The Element Fanning can be computed by dividing the
number of edges in the graph, by the number of nodes
in the graph. The graph for libraryexample.xsd

consists of three edges and four nodes, giving an
Element Fanning of 0.75.

5. XML Schema Complexity and Quality
Index

Although we have presented eleven metrics, it is

easy to develop many more. It is difficult to grasp the
meaning of these individual metric values. In an
attempt to provide an easy to understand interpretation
of these metrics, we have formulated two indices for
measuring quality and complexity.

However, it is important to emphasize that there are
both advantages and disadvantages of using composite
indices. A single index is easily understood and
quantified. However, both quality and complexity are
subjective to a certain degree and they are difficult to
be quantified in general. This is especially true for
quality, as discussed in Section 2. Many facets must be
considered to present an overall view of the underlying
quality and complexity. Thus, a single index has the
potential to be overly simplistic and inaccurate [7]. As
a result, the indices we defined below should be
considered as a first attempt at quantifying an elusive
ideal. Readers should be cautious when interpreting
the results. Taken into context, the indices provide a
general indication of the quality and complexity of
XML Schema documents and their resulting XML
documents.

Other indicators could also be used to devise the
quality or complexity indices. Based on our own
experience with XML Schema, we identified a subset
of the metrics as having more impact on overall quality
and complexity, both positively and negatively. Some
of these metrics have more weight than others in the
formulae. For instance, in our opinion, the number of
annotations describes the maintainability factor of a
document better than the total number of global types,
and thus has a higher weight in the quality index. Each
metric in the subset is weighted with a multiplier of 1
to 5, based on the importance of the metric compared
to others. Some metrics are subtracted from the
indices because we feel that they detract from quality
or complexity. The formulae follow:

Quality Index = (Ratio of simple to complex type

declarations) * 5 + (Percentage of annotations over total
number of elements) * 4 + (Average restrictions per simple
type declarations) * 4 + (Percentage of derived complex type
declarations over total number of complex type declarations) *
3 – (Average bounded element multiplicity size) * 2 – (Average
attributes per complex type declaration) * 2

Complexity Index = (Number of unbounded elements) * 5 +

(Element fanning) * 3 + (Number of complex type declarations)

+ (Number of simple type declarations) + (Number of attributes
per complex type declaration)

Note that the actual values of the weights are set

based only on our experience in analyzing many XML
Schemas. They should be considered preliminary and
are subject to changes when more experiments are
performed. Our metrics analysis tool is developed in a
way that these weights can easily be changed in the
future.

The end result of either formula will be a number
that by itself does not have much meaning. The metric
analyzer tool also stores the average of the indices of
XML Schemas it has analyzed. Once a number of
documents have been analyzed, the comparison
between the average and the document’s indices will
give a relative indication of quality and complexity.

It is also important to note that the quality index is
intended to provide an indication of the quality of the
XML Schema document, that is, how well the XML
Schemas are constructed. On the other hand, the
complexity index is used for XML documents that are
validated by the XML Schema document. This is an
important distinction, since the indices are tuned to two
different groups of documents.

6. XML Schema Metric Analyzer Tool

The tool created by the authors was designed from
the beginning to be an open source application to allow
others to contribute and strengthen it. A secondary
benefit of opening the code to the public is in the
hopes that software development groups will
incorporate the metric analyzer as a part of their
processes. Leon Osterweil makes a strong argument
for increasing the communication between the research
community and software practitioners in [8]. Ideas to
increase quality in the software process that have been
generated by researchers are lagging by as much as 20
years before entering the commercial realm [8]. By
doing research and developing a concrete tool in
parallel, it is the authors’ hope that any benefits that
come from this research can be applied in the software
development process quickly.

Besides being an open source tool, it also makes use
of openly available tools to help in extracting the
metrics from XML Schema documents. One such
underlying tool is the Castor schema object model
parser [9]. The Castor code was invaluable in
providing a base to parse XML Schema documents and
manipulate the objects generated. The application was
developed in Java 1.4 to allow for greater portability,
and two interfaces were created to allow the analyzer
to be used in either windowed environments

(Windows, OS X, X Windows, etc) or command line
environments (DOS, UNIX, etc).

The analyzer was developed in an extensible
manner. A property file specifies what objects are
instantiated to control certain aspects of the system,
like the user interface, storage method of previously
analyzed schemas, and the parser that extracts the
metrics from XML Schema documents. Each of these
items can be updated and swapped out easily. For
instance, the metrics are stored in an XML document,
but a new storage Java class can be created if the
metrics need to be stored in a database or remote
system. The base code of the analyzer does not need
to be changed to incorporate the new functionality.

Even with the ability to manipulate the individual
sections of an XML Schema document, the metric
analyzer tool is unable to capture all aspects of a XML
Schema document for quality analysis. For example,
unintelligible element names, poor layout and
improper spacing will reduce understandability of an
XML Schema document. This is difficult for a
program to determine, but is easy for humans.

Figure 2 shows the output of using the command
line mode of the analyzer to analyze
libraryexample.xsl.

Sample Metric Output

Metric Analysis of XML Schema File libraryexample.xsd

Number of Complex Type Declarations: 3
-Number of Text Complex Type Declarations: 0
-Number of Element Complex Type Declarations: 3
-Number of Mixed Complex Type Declarations: 0
Number of Simple Type Declarations: 1
Number of Annotations: 1
Number of Derived Complex types: 1
Average Number of Attributes per Complex Type: 1
Number of Global Type Declarations: 2
Number of Global Type References: 2
Number of Unbounded Elements: 2
Average Bounded Element Multiplicity: 1.00
Average Number of Restrictions per Simple Type: 1.00
Element Fanning: 0.75

Quality Index for schema: 8.51
Complexity Index for schema: 17.92

Figure 2. Metrics and indices output of analyzing
libraryexample.xsd by the tool
7. Conclusions and Future Work

In this paper, we have presented eleven metrics for

XML Schema and two indices for interpreting them.

An open source metric analysis tool has been
developed to implement these metrics and indices.
Due to the fast paced nature of the XML technologies,
the metrics, indices and the tool will need to be
updated continuously.

Additional metrics can obviously be developed.
Furthermore, a given metric will have different
importance to different application. For example, a
new metric can be proposed to measure the number of
appInfo elements, which provides documentation
about the XML Schemas to applications. This metric
may be more important if the targeted XML documents
are used as internal data format for an application. The
authors are working on a more systematic approach
and categorization of metrics for XML Schemas.

A very important problem with any software metric
is how it should be interpreted. One person may not
have the same opinion as to what makes a good XML
Schema compared to someone else. The relative
importance of a metric may also be application and
domain dependent. Although the tool is written in a
way that the formulae of the indices can be changed
easily, we plan to make it even more flexible by
storing the formulae in property files. The most
appropriate property file can then be selected for a
given scenario.

 Another extension to the configurable formulae can
be an implementation of a Bayesian learning algorithm
so that users can denote those XML Schema
documents that have a higher quality factor for their
business needs, and others that do not. Given enough
XML Schema documents, the analyzer will then be
trained to better identify the quality of an XML
Schema documents in the same domain.

An important future task is the validation or
refutation of the current formulae to determine the
relative complexity and quality of XML Schema
documents. An email based survey and a Web survey
have been created to gather feedback from key XML
Schema developers to correlate their view of
complexity and quality to those of the tools.
Unfortunately, there were not enough responses to get
a consensus. We will continue to work in this
direction.

Acknowledgement. This work is partially supported
by the Faculty Leave Fund of the University of
Houston-Clear Lake.

8. References

[1] Klettke, M., Schneider, L., Heuer, A., “Metrics for XML
document collections”, XMLDM Workshop, Czech Republic,
2002, pp. 162-176

[2] DeMarco, T., Controlling Software Projects, Yourdon,
New York, 1982

[3] Software Engineering Technical Committee of the IEEE
Computer society. IEEE Standard Glossary of Software
Engineering Terminology, IEEE-STD-729-1983, New York,
1983, p. 32

[4] Fenton, N. E. and Pfleeger, S. L., Software Metrics, a
rigorous and practical approach. 2nd Ed, PWS Publishing
Co., Boston, 1997

[5] Harter, D. E. and Slaughter, S. A., “Process Maturity and
Software Quality: a Field Study”, International Conference
on Information Systems, Proceedings of the twenty first
international conference on Information systems, Association
for Information Systems, Brisbane, Australia, 2000, pp. 407-
411

[6] W3C, “W3C XML Schema”, XML Schema
Specification, http://www.w3.org/XML/Schema

[7] Boehm, B.W., Brown, J. R., Lipow, M.,
“Quantitative Evaluation of Software Quality”, 2nd
ICSE, Vol .2, 1976, pgs. 592-605

[8] Osterweil, L., “Strategic Directions in Software Quality”,
ACM Computing Surveys (CSUR), Volume 28, Issue 4, New
York, 1996, pp. 738-750

[9] Castor, “Castor Schema Support”, Castor Schema Object
Model, http://www.castor.org/xmlschema.html

http://www.w3.org/XML/Schema
http://www.castor.org/xmlschema.html

