Inlining Algorithms For Storing XML Documents in Relational Database Systems

Kwok-Bun Yue and Alakappan Sreenivasan

University of Houston-Clear Lake

Abstract

As XML becomes ubiquitous quickly, there is a strong need for efficiently storing and querying XML documents. A popular approach is to store them into relational databases to take advantage of their maturity. To reduce the number of joins for XML querying, several inlining algorithms have been proposed to map XML Document Type Definition (DTD) into relational schemas. These algorithms generally include three steps: (1) simplify the DTD, (2) use the simplified DTD to create a DTD graph, and (3) use the DTD graph to generate the relation schema. In this paper, we present a DTD simplification algorithm that is more optimal than existing ones. This is followed by a discussion on problems that all inlining algorithms must resolve, thus providing a framework for understanding them. Finally, a new inlining algorithm with good design compromise is presented

1.
Introduction

As XML becomes ubiquitous quickly, there is a strong need for efficiently storing and querying XML documents. XML is essentially an ordered tree model, which is unlike other popular persistent data models, such as the relational model and the object-oriented model. As a result, new language standards, such as XPath 2.0 [XPath 2.0] and XQuery 1.0 [XQuery 1.0], are being developed for querying XML documents. These languages are generally expected to be widely used. Effective storage of XML documents must thus take into consideration of the efficient implementations of these queries.

There are two major approaches in storing XML documents (Ambler 2003). Native Databases [NDB] store an XML document natively as a fundamental logical unit. Popular NDB examples include Software AG’s Tamino XML server [Tamino] and the open source Apache Xindice [Xindice]. The second approach, XML Enabled Database (XEDB), has an XML layer on top of the underlying data model. The mapping layer maps the storage and querying of XML documents into the underlying database. In case of relational databases, the XML documents are stored in relations and XML queries are mapped to SQL. One of the advantages of this approach is that data can now be queried through both XML technologies, such as XQuery, XPath and DOM, or the underlying database technologies, such as SQL.

In [Shanmugasundaram 1999], Shanmugasundaram and others proposed three inlining algorithms for mapping Document Type Definition (DTD) into relational schemas.

…

Mention that the paper is not written vigorously and a formal treatment can be found elsewhere.

2. DTD Simplification

The element type declarations of DTD can be constructed using parentheses and five operators: sequence (,), choice (|), optional (?), one or more (*) and zero or more (+) [Check to see whether these are formal names.]. These declarations can be nested and complicated, for example, <!ELEMENT a (b, ((b+, c) | (d, b*, c?)), (e*, f)?)>. From the relation schema point of view, it is only important to store parent-child element relationship and order information to faithfully implement XML queries. For example, for <!ELEMENT a (b?)>, it is only important for the relation schema to provide the capability to store a child element of <a> somewhere. Thus, the mapping algorithm can treat the declaration as <!ELEMENT a (b)>. If is actually absent from <a>, it can still be faithfully represented in the relation, such as by a suitable null value.

Thus, the purpose of DTD simplification is to remove the complexity by removing all nested parentheses and the operators +, | and ?. For example, <!ELEMENT a (b, ((b+, c) | (d, b*, c?)), (e*, f)?)> can be simplified to <!ELEMENT a (b*, c, d, e*, f)>.

The initial DTD simplification procedure is proposed by [Shanmugasundaram 1999]. However, some components of the procedure have not been clearly specified and it does not completely handle all cases. [Lee 2001] supplemented the algorithm by proposing a comprehensive choice migration algorithm. Lu presented a complete simplification procedure that handles all DTD cases [Lu 2003]. However, the paper has not clearly specified when nested parentheses can be removed. Furthermore, its simplification result may not be optimal. For example, for <!ELEMENT a ((b,c)|(c,d))>, using Lu’s procedure, ((b,c)|(c,d)) will be simplified by the following steps:

((b,c)|(c,d))

-> ((b,c),(c,d))

· (b, c, c, d) [This step for parentheses removal is added by us.]

· (b, c*, d)

In the simplified result, <a> may now contain many <c> child elements. However, in the original declaration, <a> contains exactly one <c> child and the optimal result should be (b, c, d).

To handle this situation, we cannot simply convert all occurrences of | to ,. Instead, it is necessary to compare each operand of the | operator. Before we present our procedure, it is necessary to define several terms.

Definition 1. An atom is either e or e*, where e is an element.

Definition 2. A comma-separated clause is a sequence of atoms, i.e., (a1, a2, …, an), where every ai is an atom. A comma-separated clause may contain only one atom (i.e. n = 1). A non-redundant comma-separated clause is a comma-separated clause where no two atoms are formed from the same element.

Note that (b, (c, d)) is not a comma-separated clause. since (c,d) is not an atom.

Definition 3. An element e appears in a comma-separated sequence clause if e or e* is an atom in c. An element e appears as e* in a comma-separated clause c if e* is an atom in c.

The following DTD simplification procedure is based on [Lu]. It produces a result DTD such that each element declaration is a non-redundant comma-separated clause. The procedure is optimal in the sense that an atom e* will not be produced if e is sufficient.

For every DTD expression of an element declaration in the DTD:

[1] Remove of +: Apply rule [1] recursively until the expression contains no +.

[2] Removal of ?: Apply rule [2] recursively until the expression contains no ?.

[3] Producing comma-separated clause: Apply rules [3] to [5] recursively until the result is a comma-separated clause.

[4] Removal of redundant atoms: Apply rule [5] recursively until the result is a non-redundant comma-separated clause.

Note that there is no rule for (expr1 | expr2 | … | exprn)*, where every expri is a DTD expression. Rules (3) to (6) must be applied recursively until rule (4) (a) can be applied.

In the following rules, expr and expri’s are DTD expressions; e is an element; a and ai’s are atoms; and c and ci‘s are comma separated clauses.

1. expr+ -> expr*, where expr is a DTD expression.

2. expr? -> expr, where expr is a DTD expression

3. (a) (c1 | c2 | …| cn) -> c such that (i) an element e appears in c if and only if e appears in at least one ci, and (ii) if an element e appears as e* in c if and only if e appears in at least one ci as e*.

 (b) … expr1 | (a1 | a2 | …| an) | expr2, … -> … expr1 | a1 | a2 | …| an | expr2, …, where expr1 and expr2 are DTD expressions and every ai is an atom.

4. (a) (a1, a2, …, an)* -> (a1*, a2*, …, an*), where every ai is an atom.

 (b) … expr1, (a1, a2, …, an), expr2, … -> … expr1, a1, a2, …, an, expr2, …, where expr1 and expr2 are DTD expressions and every ai is an atom.

5. a** -> a*, where a is an atom.

6. ((expr)) -> (expr)

7. This is the same as Lu’s (5), Sreeni: please copy.

Figure 1 DTD Simplification Rules

The following is an example of using the procedure:

(b?,((b+,c,d)|(c?, (d|(e*,f))+))

-> (b?,((b*,c,d)|(c?,(d|(e*,f))*))
[repeated uses of rule [1]]

-> (b,((b*,c,d)|(c,(d|(e*,f))*))

[repeated uses of rule [2]]

-> (b,((b*,c,d)|(c,(d, e*, f)*))

Rule (3) (a)]

-> (b,((b*,c,d)|(c,(d*, e**, f*)))
[Rule (4) (a)]

-> (b,((b*,c,d)|(c,d*,e*,f*)))

[Rule (5)]

-> (b,((b*,c,d)|(c,d*,e*,f*)))

[Rule (4) (b)]

-> (b,(b*,c,d*,e*,f*))

[Rule (6)]

-> (b,b*,c,d*,e*,f*)

[Rule (4) (b)]

-> (b*,c,d*,e*,f*)

[Rule (7)(b)]

The proof of the following theorems can be found elsewhere [Yue&Sreeni]

Theorem 1. The proposed simplification procedure is complete in the sense that it will handle all DTD cases and will produce non-redundant comma-separated clauses for all element declarations.

Theorem 2. The proposed simplification procedure is optimal in the sense that it will not include any atom e* in any resulting non-redundant comma-separated clauses if e is sufficient.

References

[XPath2.0 2003] Berglund A., et. al., XML Path Language (XPath) 2.0 W3C Working Draft (2003), http://www.w3.org/TR/xpath20/.

[Xquery 1.0 2003] Boag S., et. al., XQuery 1.0: An XML Query Language

W3C Working Draft (2003), http://www.w3.org/TR/xquery/.

[Ambler 2003] Ambler, S., Agile Database Techniques, John Wiley & Sons, New Jersey (2003).

[Tamino] Tamino XML Server, Software AG, http://www.softwareag.com/tamino/.

[Xindice] Apache Xindice, http://xml.apache.org/xindice/.

[Shanmugasundaram 1999] J. Shanmugasundaram et al. Relational databases for querying XML documents: Limitations and opportunities. VLDB Journal, pages 302–314, 1999.

[Lu 2003] Shiyong Lu, Yezhou Sun, Mustafa Atay, Farshad Fotouhi, A New Inlining Algorithm for Mapping XML DTDs to Relational Schemas", in Proc. of the First International Workshop on XML Schema and Data Management, in conjunction with the 22nd ACM International Conference on Conceptual Modeling (ER'2003), Lecture Notes in Computer Science, Volume 2814, pp. 366--377, Chicago, Illinois, USA, October, 2003.

[Lee 2001] Lee, D., Chu, W.: CPI: Constraint-Preserving Inlining algorithm for mapping XML DTD to relational schema. Data and Knowledge Engineering 39 (2001) 3--25

