JavaServer Pages™
Specification

Versonl.l

please send commentsto jsp-pec-comments@eng.sun.com

S

2 Sun

microsystems

THE NETWORK IS THE COMPUTER"

Java Software

A Division of Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, California 94303
415960-1300 fax 415 969-9131

November 30, 1999

Eduardo Pelegri-Llopart, Larry Cable

JavaServer Pages™ Specification ("Specification")
Version: 1.1

Status: Final Release

Release: 12/17/99

Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rightsreserved.

NOTICE.

This Specification is protected by copyright and the information described herein may be protected by one or

more U.S. patents, foreign patents, or pending applications. Except as provided under the following license,

no part of this Specification may be reproduced in any form by any meanswithout the prior written

authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of this Specification and

the information described herein will be governed by these terms and conditions and the Export Control and
General Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying this
Specification, you agree that you have read, understood, and will comply with all the terms and conditions set
forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the
right to sublicense), under Sun's intellectual property rights that are essential to practice this Specification, to
internally practice this Specification solely for the purpose of creating a clean room implementation of this
Specification that: (i) includes a complete implementation of the current version of this Specification, without
subsetting or supersetting; (ii) implements all of the interfaces and functionality of this Specification, as
defined by Sun, without subsetting or supersetting; (iii) includes a complete implementation of any optional
components (as defined by Sun in this Specification) which you choose to implement, without subsetting or
supersetting; (iv) implements all of the interfaces and functionality of such optional components, without
subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the "java.*" or
"javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing requirements
available from Sun relating to the most recently published version of this Specification six (6) months prior to
any release of the clean room implementation or upgrade thereto; (vii) does not derive from any Sun source
code or binary code materials; and (viii) does not include any Sun source code or binary code materials
without an appropriate and separate license from Sun. This Specification contains the proprietary information
of Sun and may only be used in accordance with the license terms set forth herein. This license will terminate
immediately without notice from Sun if you fail to comply with any provision of this license. Sun may, at its
sole option, terminate this license without cause upon ten (10) days notice to you. Upon termination of this
license, you must cease use of or destroy this Specification.

TRADEMARKS.

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, Jini, JavaServer Pages, Enterprise JavaBeans,
Java Compatible, JDK, JDBC, JAVASCRIPT, JavaBeans, JavaMail, Write Once, Run Anywhere, and Java
Naming and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc. in the

U.S. and other countries.

DISCLAIMER OF WARRANTIES.

THIS SPECIFICATION IS PROVIDED "AS I1S". SUN MAKES NO REPRESENTATIONS OR

WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY

PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.

This document does not represent any commitment to release or implement any portion of this Specification
in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIESOR TYPOGRAPHICAL
ERRORS. CHANGESARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGESWILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THISSPECIFICATION AT ANY TIME. Any use of such changesinthe
Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.

TOTHEEXTENT NOT PROHIBITED BY LAW, IN NOEVENT WILL SUN ORITSLICENSORSBE
LIABLE FORANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
ORDATA, ORFOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL ORPUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TOANY FURNISHING, PRACTICING, MODIFYING ORANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITSLICENSORSHAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and itslicensorsfrom any claimsarising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean
room implementation; and/or (iii) any claimsthat later versions or releases of any Specification furnished to
you areincompatible with the Specification provided to you under thislicense.

RESTRICTED RIGHTS LEGEND.

Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in thislicense
and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)(Oct
1988), FAR 12.212(a) (1995), FAR 52.227-19 (June 1987), or FAR 52.227-14(ALT II1) (June 1987), as
applicable.

REPORT.

You may wish to report any ambiguities, inconsistencies, or inaccuraciesyou may find in connection with
your use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you
hereby: (i) agreethat such Feedback is provided on anon-proprietary and non-confidential basisand (ii) grant
Sun aperpetual, non-exclusive, worldwide, fully paid-up, irrevocablelicense, with theright to sublicense
through multiplelevels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for
any purpose related to the Specification and future versions, implementations, and test suitesthereof.

Contents

PrEfaCE. ... Xiv
Who should read thisdocumentc.ccocevrrenenrcceniennens Xiv
Related DOCUMENLSovuveiirieeiiiiesie e XV

Chapter 1: OVENVIBW ...coeeiieiieie ettt 18

The JavaServer Pages™ Technologyccooeviiiiiiiiiiiiiiiiieniieens 18

What is @ JSP Page? ...cuuuiiiiiiiiie e 19

Features iN ISP 1.1 ... 22

Overview of JSP Page SemantiCS..........ccccceveveiieeviviiiiiiin e 22
Translating and Executing JSP Pages........c.ccccoevvveevvveennnnne. 22
Compiling JSP Pagesccooiiiiiiiiiiiii e 23
ODbjects and SCOPEScovvvveeiiiiieie e e 24
Fixed Template Datacuveeeiiieiiieiieiciee e 25
Directives and ACHIONSuvuriirieiiiiiiiiiiieiieeieeieee e 25
SCripting LanNQUAaQgES.......covvvviiiiiee e ee e 26
Objects and Variables............ccovvvviiiiiiie i 26
Scripts, Actions, and Beans.............coooiviiiiiiiiiiiiiieeees 27
JSP, HTML, and XMLooooiiiiiiiii s 27

LAVZ=] oI Y o] o] 1 To7= 1 o] o =P 28

Contents

iv

v

ApPlication MOEccueeiieiieee e 28

Simple 21/2-Tier Applicationcccocoeecieieeniniee e 29
N-tier APPlICALION.cccueiiiiieiee e 29
Loosely Coupled Applications..........cccoevvvvveeieeveeniesieeennn, 30
Using XML with JSP Technologyccccvoiiiiiiiniennens 31
Redirecting REQUESLScoieiiiiieeieeeeee e 32
INClUiNg REQUESESeeeeveeierieiecie e ere e se et 33
Chapter 2: Standard Syntax and Semantics.......coccevivvvrvireeneenienns 34
General Syntax RUIES........cccceivieirierie e 34
Elements and Template Datacccceeeeeneeiiinieeieeesieee 34
Element SYNtaXx........cooeerer e 34
Start and ENd TagS......cccvvveeieeieeieseeie e 35
Empty EIEMENtS........coooeeiiiiieieeeeeee e 35
ALLiDULE VAIUES.......ceeie e 35
WHhIte SPECE.....ccuvieiee e cee ettt 36
Error Handlingcooeeoeeieiecee e 37
Translation Time Processing Errors.........cccoovceeveenienienns 37
Client Request Time Processing EIfors..........ccccevevevvevenenne 37
COMMENTS ... e 38
Quoting and Escape CONVENtioNSccooeereererrieeneenee e e 39
Overview of SEMANLICS........coiirieriireeeee e 39
Web APPIICALIONScceeeieieieie et 40
Relative URL Specifications within an Application........... 40
Web Containers and Web Components..........cccceveereeeneenne 41
JSP PAGES......eeeeeeeee e 41
Template Text SEMANtICS......cccveveriieereeree e 42
DITECHIVES. ...ttt 42

JavaServer Pages 1.1 Specification ¢ November 30, 1999

The page DIir€CtiVe......ccvvvv e 43

Synchronization [SSUES..........coieeieiiierie e 47
Specifying Content TYPESeevvereererre e esee e nee e 49
Delivering Localized Contentcccceveevveeevvereesensin e 49
Including Datain JSP Pages.........ccccovieiiinieiniieineenieeneene 50
Theinclude DIreCliVe.......cccooviiinirerecreeeee e 50

The taglib DIireCtiVecoceiiiiiieee e 51
IMPLICit ODJECES.....coiiiiiiiie e 52
The pageContext ObJECEccvevivie e 54
SCripting EI@MENtScoove e 54
DECIAIELIONScovveviiriere e s 55
SCHPLIELS ..t 55
(o= 0] 56
ACHONS ...t 57
Tag Attribute Interpretation SEmanticscoeveereniieenieesieeeen. 57
Request Time Attribute Values...........ccoooeeieiieeiie i 57
Theid AttribULe.......coeeeee e 58

The scope AttHDULE.........ccee i 59
Standard ACLIONSc..oiiiierieieerec e e 61
<JSPIUSEBEANS ... 61

LS = 0] 1 Y 64
<JSPIOELPrOPEItY> ... oot 66
SJSPUNCIUAES .. 67
JSPFOrWArd>.......eeee e 68

S LS o 0 =0 > USSR 69
SJSPIPIUGIND . 70
Chapter 3: The JSP Containercooveiiiiiiniieeeeeee e 72

Contents vi

vii

The JSP Page MOdE!cccviiieceece e 72

JSP Page Implementation Class..........ccooeererieiniiiieeieee e 74
APl CONIACESocoviiiie i 75
Request and Response Parameters.........ccccvevveeveriiecnieennn. 76
Omitting the extends Attributecccceveeveevcevcee e, 76
Using the extends Attributecoceeieeniniieiienee e, 79

201 1= T SR 79

Precompilation..........ccceeivereeiie e 80
Request Parameter Names..........ccoceeieiinieeeniee e 80
Precompilation Protocolcociiiieeiinniniiee e, 80

Chapter 4: SCrPLING...ccoe e e 82

OVErall SITUCTUNE.c.eeieiieiiiee e e 82

DeClarations SECHIONcovvvereeceeese e 84

INitialiZation SECHION ..o 84

MaIN SECLION ...t e 84

Chapter 5: Tag EXTENSIONS......ccoeiveeeiiesie e veesseeseesee e 86

INEFOTUCTION ... 86
GOBIS. .ttt 87
OVEIVIBI ...ttt 87
TG 1] 0] 1= SR 89

LI o L o YA 91
Packaged Tag Libraries........cccooeeiiiiiiieiinee s 91
Location of Java ClaSses.........ccevveiereeienenie e sreeinens 92

Tag Library direCtivecccceevvecee e 92
Tag Library DESCIPLOLcccueriieieiieie et 92
Locating a Tag Library DesCriptor.........cccovvveerereenciennens 93
Translation-Time Class Loaderccccoovninecincvceenenn, 95

JavaServer Pages 1.1 Specification ¢ November 30, 1999

Assembling aWeb Application..........cccccveeieeveeie e 95

WEll-KNOWN URIS.....cocoiiiiiiiiiiiee s 95

The Tag Library Descriptor Formatccccceeveeveiveninenne 96

Tag HaNAIErS....c.ve ettt 100
PrOPEITIES ..ot e 100
Basic Protocol: Tag Interface........cccoooeiierieiieenie e 101
The TagSupport Base Class........cocvveeeveeereeieesieene e 103
Body Protocol: BodyTag Interface.........cccooeeveiiiiiiennenne 103
The BodyContent Class........cccccvvveeerieenieesenseeseesee e 105
The BodyTagSupport Base Class.........cccvevvvvvveccieesennnnn, 105
Life-Cycle Considerationsccoceeeeeieeniesiieeiee e 106
Scripting VariablS.......ocveveiciiceeeese e 108
Co0PErating ACHIONS......ccviriiriirereeeee e 109
Ids and PageCoNnteXt........cccvverriereienieesee e see e e 109
RUN-TIiME SEACKooeeiivicieiiiriiee e 109
ValidatioN......ccveieiece e 110
Syntactic Information onthe TLDcccovceevvvevcevcieeceeiee 110
Syntactic Information in a TagExtralnfo Class 110
Raising an Error at ACtion TimMeccceeveveieeiinnenneenees 110
Conventions and Other ISSUEScovvvrerenenieniene e 111
How to Define New Implicit Objects......cccccvecveceeveeneene 111
Access to Vendor-Specific information...........cccoceeeennee 111
Customizing aTag Library......ccccocevevevveice e 112
Chapter 6: JSP Technology Classes........cccoveeieriieeiiniee e 114
Package javaX.SerVIEt. SP.....ccueiie e seese e 114
JspPage and HttpJspPagecceeveveceeveee e 114
JSPWWIILEN ..t e e 115

Contents

viii

JspEXception and JSPEITOr........cccuveveeveereeseese e 117

PagECONIEXT.....c. ittt 117
S o] =l gTo 1 0=) (T 121
N o 0 (0] Y 121
Package javax.serviet.jsp.tageXt........coviiiiine e 121
Chapter 7: JSP Pages as XML DOCUMENTS........ccoooeereiriieinieeneenennns 124
Why an XML Representationccooveceeierieeniesie e 124
DOCUMENT TYPE.....eeieiieie ittt see e e e 125
The jSp:root EIementcccevveveeieee e eeeese e 125
PUBIIC ID i 125
DITECHIVES. ...ttt 125
The page dir€CtiVecooeeieiiii e 125
Theinclude DIreCliVeccoevreriree e 126
The taglib DIireCtiVe.......ccooioiiiiniieieee e 126
SCripting ElEemMeNtS.......c.coiiiiiiie e 126
DECIAratioNS.veveeeeeeee e 127
o] o1 S 127
EXPIESSIONS......eiiiiiiee ettt 127
ACHTONS. ..ttt 128
Transforming a JSP Page into an XML Document 128
Quoting CONVENLIONS.........ccevreereerie e ee e e 129
Request-Time Attribute EXPressions.........cccoceveeieenieennnn. 129
DTD for the XML dOCUMENTc.ccviiiriirireereeeeeeee e 129
ApPPendiX Az EXAMPIES......oouiiiiiieiee et 132
SIMPlE EXAMPIES ...ttt et 132
Call Functionality, N0 BOYcccceerierireinieieneeieineeenaens 132
Call Functionality, No Body, Define Object..........ccccccveenene 133

JavaServer Pages 1.1 Specification « November 30, 1999

Template MeChaniSMSccccvrererenerereeeere e 133

A 0.92-1TKE USEBEAN ..ot 133

A Set Of SOL TaGS. . iceiereereereeeeiesesesesees e seeseeseeeese s e sse e sresrenee s 134
Connection, Userld, and Passwordc.ccccovrrnreeninnnennnn. 134

L0 11 o Y 135

1S 2= o] o TSRS 135
Appendix B: Implementation NOEScvcveveireniineneneeese e 138
Delivering Localized CONteNt...........ccevreeeererierenene e 138
Processing TagLib direCtiVes........ccooeiieieriiieeieereneeee e 138
Processing Tag Libraries.......ccoooiieneeneieeeeee e 139
Processing a Tag Library DesCriptorccccoeeveeeneveesieene 139
Processing aJSP Page.......ccoerervereriereeieereseee s 139
Generating the JSP Page Implementation Class................... 140

AN EXAMPIE..c.eiitiiiiii e e s 140
Implementing BUFfEringcooooeieneiinnere e 144
Appendix C: Packaging JSP Pages..........ccccvvvevieinieineeseeseeseesneeens 146
A very SImple JSP Page.......coeeeirerinene e 146

The JSP page packaged as sourcein aWARfile.........ccocevrenene 146

The Servlet for the compiled JSP page.........ccccevevvinennnienienieens 147

The Web Application DESCrPLOLcoovrereriereenieeeieieseee e 148

The WAR for the compiled JSP page.........cccovrenenienenenenen 149
APPENIXD: FULUI ...ttt 150
Meta-Tag INfOrMationcceueeriirinire e 150

S = 00 1= 1 [=0 SRR 150
Additional Application SUPPOKt.........cceeererereireeiieeeeeeseee e 150
JSP, XML and XSL TechnolOgiescccooererernenienere e 151
ApPPENIXE: ChanQES......ccoiiveveirii e eree e e e 152

Contents

X

Xi

(0147 1110 == U S 152
Changes between 1.1 PR1 and PR2.........ccccccvvrenivvievesnnie e e 153
AQAITIONS.....oeceieirereee e 153
L0147 1110 == US 153
Changesbetween 1.1 PD1and PRIcccccovvveeeverie e 154
AAAItIONS......ceiiiieiiiree e 154
CANGES ... ettt s 154
DEELIONS ... 155
Changesbetween 1.0 and 1.1 PD1 ... 155
AAItIONS......ceiiiiiiirece e 155
ChANGES. .. et s s 155
REMOVAIS......cceiiiicteete s 155

FaN o] o = o [0 S €1 o == o S 156

JavaServer Pages 1.1 Specification « November 30, 1999

Contents Xii

xiii JavaServer Pages 1.1 Specification « November 30, 1999

Preface

Thisis the final version of the JavaServer Pages™ 1.1 Specificatidiis specification has
been developed following the Java Community Process. Comments from Experts,
Participants, and the Public have been reviewed and incorporated into the specification where
applicable.
JSP 1.1 extends JSP 1.0 by:

n Using Servlet 2.2 as the foundations for its semantics.

n Enabling the delivery of translated JSP pages into JSP containers.

n Providing a portable Tag Extension mechanism.

Details on the conditions under which this document is distributed are described in the
license on page 2.

Who should read this document

This document is intended for:

* Web Server and Application Server vendors that want to provide JSP containers that
conform to the Tag Extensions specification.

» Web Authoring Tool vendors that want to generate JSP pages that conform to the Tag
Extensions specification.

» Service providers that want to deliver functionality as tag libraries.

« Sophisticated JSP page authors that want to define new tag libraries for their use, or who
are responsible for creating tag libraries for the use of a group.

» Eager JSP page authors who do not want to or cannot wait for Web Authoring Tools, or
even a User’s Guide.

This document is not a User’s Guide, but it contains some positioning and explanatory
material.

Preface xiv

Related Documents

JSP 1.1 requires only JDK ™ 1.1 but it can take advantage of the Java 2 platform.

Implementors of JSP containers and authors of JSP pages will be interested in a number of
other documents, of which the following are worth mentioning explicitly.

TABLE P-1 Some Related Documents

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/ser vlet
JDOK 1.1 http://java.sun.com/products/jdk/1.1
Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.2
Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home page http://java.sun.com/xml
JavaBeans' technol ogy home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/ XML

HTML home page at W3C http://www.w3.org/MarkUp
XML.org home page http://www.xml.org

xv JavaServer Pages 1.1 Specification « November 30, 1999

Acknowledgments

Many people contributed to the JavaServer Pages specifications. In addition to the people
who helped with the JSP 1.0 specification and reference implementation we want to thank a
few individuals for their special effort on the JSP 1.1 specification:

We want to thank the following people from Sun Microsystems: Suzanne Ahmed, Janet
Breuer, Abhishek Chauhan, James Davidson, Chris Ferris, Michaela Gubbels, Mark Hapner,
Jim Inscore, Costin Manalache, Rajiv Mordani, Mandar Raje, Bill Shannon, James Todd,
Vanitha Venkatraman, Anil Vijendran, Connie Weiss and Cara Zanoff France.

The success of the Java Platform depends on the process used to define and evolve it. This
open process permits the development of high quality specifications in internet time and
involves many individuals and corporations. Although it is impossible to list al the
individuals who have contributed, we would like to give thanks explicitly to the following
individuals: JJ Allaire, Elias Bayeh, Hans Bergsten, Vince Bonfanti, Bjorn Carlston, Shane
Claussen, Mike Conner, Scott Ferguson, Bob Foster, Mike Freedman, Chris Gerken, Sanjeev
Kumar, Craig McClanahan, Rod Magnuson, Stefano Mazzocchi, Rod McChesney, Dave
Navas, Tom Reilly, Simeon Simeonov, and Edwin Smith. Apologies to any we may have
mi ssed.

Last, but certainly not least important, we thank the software developers, Web authors and
members of the general public who have read this specification, used the reference
implementation, and shared their experience. You are the reason the JavaServer Pages
technology exists.

Preface xvi

xvii JavaServer Pages 1.1 Specification « November 30, 1999

CHAPTER

1

Overview

This chapter provides an overview of the JavaServer Pages technology.

1.1

Overview 18

The JavaServer Pages™ Technology

JavaServer Pages’ technology is the Java™" platform technology for building applications
containing dynamic Web content such as HTML, DHTML, XHTML and XML. The
JavaServer Pages technology enables the authoring of Web pages that create dynamic content
easily but with maximum power and flexibility.

The JavaServer Pages technology offers a number of advantages:
+ Write Once, Run Anywhere™ properties

The JavaServer Pages technology is platform independent, both in its dynamic Web pages,
its Web servers, and its underlying server components. You can author JSP pages on any
platform, run them on any Web server or Web enabled application server, and access them
from any Web browser. You can also build the server components on any platform and run
them on any server.

« High quality tool support

The Write Once, Run Anywhere properties of JSP allows the user to choose best-of-breed
tools. Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

» Reuse of components and tag libraries

The JavaServer Pages technology emphasizes the use of reusable components such as:
JavaBeans' " components, Enterprise JavaBeans' components and tag libraries. These
components can be used in interactive tools for component development and page
composition. This saves considerable development time while giving the cross-platform
power and flexibility of the Java programming language and other scripting languages.

e Separation of dynamic and static content

The JavaServer Pages technology enables the separation of static content from dynamic
content that is inserted into the static template. This greatly simplifies the creation of
content. This separation is supported by beans specifically designed for the interaction
with server-side objects, and, specialy, by the tag extension mechanism.

» Support for scripting and actions

The JavaServer Pages technology supports scripting elements as well as actions. Actions
permit the encapsulation of useful functionality in a convenient form that can also be
manipulated by tools; scripts provide a mechanism to glue together this functionality in a
per-page manner.

* Web access layer for N-tier enterprise application architecture(s)

The JavaServer Pages technology is an integral part of the Java 2 Platform Enterprise
Edition (J2EE), which brings Java technology to enterprise computing. You can now
develop powerful middle-tier server applications, using a Web site that uses JavaServer
Pages technology as a front end to Enterprise JavaBeans components in a J2EE compliant
environment.

1.2 What is a JSP Page?

A JSP page is a text-based document that describes how to process a request to create a
response. The description intermixes template data with some dynamic actions and leverages
on the Java Platform.

The features in the JSP technology support a number of different paradigms for authoring of
dynamic content; some of them are described in Section 1.6. The next couple of examples
only attempt to present the technical components of the JSP specification and are not
prescribing “good” or “bad” paradigms.

An Example Using Scripting and Beans

An simple example of a JSP page is showAIGURE 1-1. The example shows the response
page, which is intended to be a short list with the day of the month and year at the moment
when the request is received. The page itself confaied template text and additional

elements described by the JSP specification that are shown underlined in the figure. As the
request reaches the page, the response is created based on the template text. As the first
element is reached, a server-side Bean object is created withcham& and type

19 JavaServer Pages 1.1 Specification « November 30, 1999

cal endar . j spCal endar. Thisobject can be used and modified later in the page. In
particular, the next two elements access properties of the object and insert these values into
the response page as strings.

FI GURE 1-1 A JSP Page using Beans and Scripting

JSP Container JSP Page

<html>
<jsp:useBean id="clock
class="calendar.jspCalendag /

request —a

response w—f— Day: <%=clock.getDayOfMonth() %
Year: <%=clock.getYear() %

</html>

An Example Using a Tag Library

FIGURE 1-2 is another example of a JSP page. This page uses custom actions to create the

server-side object and then to produce the response data. In the example, at agl i b directive
first makes available into this page a tag library for data base queries. The directive indicates
the tag library to use and provides a prefix to use locally in this page to name those actions.

Designing tag libraries is a delicate effort, analogous to that of designing a language; we are
making no special effort here to define tags that are useful for any but pedagogical purposes.
For the purposes of this example, we will assume that this fictitious tag library introduces
four actions :

A queryBlock action introduces a data base connection; it can contain queryStatement
actions and queryCreateRow actions. The connData attribute refers to connection-specific
data, like login and password, that are to be defined elsewhere; see Appendix 5.8.3 for
suggestions on where to place the information.

A queryStatement action must be enclosed in a queryBlock. A queryStatement’s body is a
SQL statement; it will use the connection data defined in the enclosing queryBlock.

Chapter 1 Overview 20

21

A quer yCr eat eRows action must be enclosed in a quer yBl ock action. A
guer yCr eat eRows action will iterate over the results of the last executed query and will
generate up to as many rows as requested.

A quer yDi spl ay action must be enclosed in aquer yCr eat eRows action. A
qguer yDi spl ay action will access the requested field from the current iteration in
guer yCr eat eRows and insert the value into the out object.

FI GURE 1-2 A JSP page using custom actions

<html>

<%@ taglib uri="http://acme.com/taglibs/simpleDB.tld” prefix="x" %>
<x:queryBlock connData="conDatal">
<x:queryStatement>
SELECT ACCOUNT, BALANCE FROM ...
</x:queryStatement>
The top 10 accounts and balances are:
<table>
<tr><th>ACCOUNT</th><th>BALANCE</th></tr>
<x:queryCreateRows from="1" to="10">

</x:queryCreateRows>
</table>
</x:queryBlock>

</html>

<td><x:queryDisplay field="ACCOUNT"/></td>
<td><x:queryDisplay field="BALANCE"/></td>

In this example:

The x:queryCreateRows action implicitly refers to the object created by the
X:queryStatement within the same x:queryBlock

The x:queryDisplay actions refer to the current row in the query result that is being
iterated over by x:queryCreateRows

The code that locates a connection (perhaps from a connection pool), performs the

JDBC™ API query, and navigates through the result of this query is hidden in the
implementation of the custom actions. This encourages division of labor and isolation
from changes.

JavaServer Pages 1.1 Specification « November 30, 1999

Components and Containers

The JavaServer Pages technology builds on the Servlet standard extension. JavaServer Pages
is a Standard Extension that is defined extending the concepts in the Servlet Standard
Extension. JSP 1.1 uses the classes from Java Servlet 2.2 specification.

JSP pages and Servlet classes are collectively referred as Web Components. JSP pages are
delivered to a Container that provides the services indicated in the JSP Component Contract.

JSP 1.1 and Servlet 2.2 rely only on features in the Java Runtime Environment 1.1, although
they are compatible with, and can take advantage of, the Java 2 Runtime Environment.

1.3

Featuresin JSP 1.1

The JavaServer Pages specification includes:

» Standard directives

e Standard actions

» Script language declarations, scriptlets and expressions
» A portable tag extension mechanism.

Most of the integration of JSP pages within the J2EE platform is inherited from the reliance
on the Servlet 2.2 specification.

1.4

1.4.1

Chapter 1

Overview of JSP Page Semantics

This section provides an overview of the semantics of JSP pages

Translating and Executing JSP Pages

A JSP page is executed in a JSP container, which is installed on a Web server, or on a Web
enabled application server. The JSP container delivers requests from a client to a JSP page
and responses from the JSP page to the client. The semantic model underlying JSP pages is
that of a servlet: a JSP page describes how to create a response object from a request object
for a given protocol, possibly creating and/or using in the process some other objects.

Overview 22

1.4.2

All JSP containers must support HTTP as a protocol for requests and responses, but a
container may also support additional request/response protocols. The default request and
response objects are of type Ht t pSer vl et Request and Ht t pSer vl et Response,
respectively.

A JSP page may also indicate how some events are to be handled. In JSP 1.1 only init and

destroy events can be described: the first time a request is delivered to a JSP page a jsplnit()
method, if present, will be called to prepare the page. Similarly, a JSP container can reclaim
the resources used by a JSP page at any time that a request is not being serviced by the JSP
page by invoking first its jspDestroy() method; this is the same life-cycle as that of Serviets.

A JSP page is represented at request-time by a JSP page implementation class that
implements the j avax. servl et. Ser vl et interface. JSP pages are often implemented
using a JSP page translation phase that is done only once, followed by some request
processing phase that is done once per request. The translation phase creates the JSP page
implementation class. If the JSP page is delivered to the JSP container in source form, the
translation of a JSP source page can occur at any time between initial deployment of the JSP
page into the runtime environment of a JSP container and the receipt and processing of a
client request for the target JSP page.

A JSP page contains some declarations, some fixed template data, some (perhaps nested)
action instances, and some scripting elements. When a request is delivered to a JSP page, all
these pieces are used to create a response object that is then returned to the client. Usually,
the most important part of this response object is the result stream.

Compiling JSP Pages

JSP pages may be compiled into its JSP page implementation class plus some deployment
information. This enables the use of JSP page authoring tools and JSP tag libraries to author
a Servlet. This has several benefits:

* Removal of the start-up lag that occurs when a JSP page delivered as source receives the
first request.

» Reduction of the footprint needed to run a JSP container, as the java compiler is not
needed.

If a JSP page implementation class depends on some support classes in addition to the JSP
1.1 and Servlet 2.2 classes, the support classes will have to be included in the packaged WAR
so it will be portable across all JSP containers.

Appendix C contains two examples of packaging of JSP pages. One shows a JSP page that is
delivered in source form (probably the most common case) within a WAR. The other shows
how a JSP page is trandlated into a JSP page implementation class plus deployment
information indicating the classes needed and the mapping between the original URL that
was directed to the JSP page and the location of the Servlet.

23 JavaServer Pages 1.1 Specification « November 30, 1999

1.4.3

Chapter 1

Objects and Scopes

A JSP page can create and/or access some Java objects when processing a request. The JSP
specification indicates that some objects are created implicitly, perhaps as a result of a
directive (see Section 2.8, “Implicit Objects”); other objects are created explicitly through
actions; objects can also be created directly using scripting code, although this is less
common. The created objects hav&ape attribute definingwhere there is a reference to the
object andwhen that reference is removed

The created objects may also be visible directly to the scripting elements through some
scripting-level variables (see Section 1.4.7, “Objects and Variables”).

Each action and declaration defines, as part of its semantics, what objects it defines, with
what scope attribute, and whether they are available to the scripting elements.

Objects are always created within some JSP page instance that is respondingreggesne
object. There are several scopes:

* page - Objects withpage scope are accessible only within the page where they are
created. All references to such an object shall be released after the response is sent back
to the client from the JSP page or the request is forwarded somewhere else. References tc
objects withpage scope are stored in tipageCont ext object.

» request - Objects withrequest scope are accessible from pages processing the same
request where they were created. All references to the object shall be released after the
request is processed; in particular, if the request is forwarded to a resource in the same
runtime, the object is still reachable. References to objectsreqtiest scope are stored
in ther equest object.

« session - Objects withsession scope are accessible from pages processing requests that
are in the same session as the one in which they were created. It is not legal to define an
object with session scope from within a page that is not session-aware (see Section 2.7.1,
“The page Directive”). All references to the object shall be released after the associated
session ends. References to objects sathion scope are stored in tlsessi on object
associated with the page activation.

» application - Objects withapplication scope are accessible from pages processing
requests that are in the same application as they one in which they were created. All
references to the object shall be released when the runtime environment reclaims the
Ser vl et Cont ext . Objects with application scope can be defined (and reached) from
pages that are not session-aware. References to objectapplittation scope are stored
in theappl i cati on object associated with a page activation.

A name should refer to a unique object at all points in the execution, i.e. all the different
scopes really should behave as a single name space. A JSP container implementation may ©
not enforce this rule explicitly due to performance reasons.

Overview 24

144

1.4.5

Fixed Template Data

Fixed template data is used to describe those pieces that are to be used verbatim either in the
response or as input to JSP actions. For example, if the JSP page is creating a presentation in
HTML of alist of, say, books that match some search conditions, the template data may
include things like the , , and something like The following book...

This fixed template data is written (in lexical order) unchanged onto the output stream
(referenced by the implicit out variable) of the response to the requesting client.

Directives and Actions

There may be two types of elementsin a JSP page: directives or actions. Directives provide
globa information that is conceptually valid independent of any specific request received by
the JSP page. For example, a directive can be used to indicate the scripting language to use
in a JSP page. Actions may, and often will, depend on the details of the specific request
received by the JSP page. If a JSP container uses a compiler or translator, the directives can
be seen as providing information for the compilation/translation phase, while actions are
information for the subsequent request processing phase.

An action may create some objects and may make them available to the scripting elements
through some scripting-specific variables.

Directive elements have a syntax of the form
<%@ directive ...%>

Action elements follow the syntax of XML elements, i.e. have a start tag, a body and an end
tag:

<mytag attr1="attribute value” ...>

body

</mytag>
or an empty tag

<mytab attr1="attribute value” .../>

An element has an element type describing its tag name, its valid attributes and its semantics;
we refer to the type by its tag name.

Tag Extension Mechanism

An element type abstracts some functionality by defining a specialized (sub)language that
allows more natural expression of the tasks desired, can be read and written more easily by
tools and aso can even contribute specialized yet portable tool support to create them.

25 JavaServer Pages 1.1 Specification « November 30, 1999

1.4.6

1.4.7

Chapter 1

The JSP specification provides a Tag Extension mechanism (see Chapter 5) that enables the

addition of new actions, thus allowing the JSP page “language” to be easily extended in a
portable fashion. A typical example would be elements to support embedded database
queries. Tag libraries can be used by JSP page authoring tools and can be distributed along
with JSP pages to any JSP container like Web and Application servers.

The Tag Extension mechanism can be used from JSP pages written using any valid scripting
language, although the mechanism itself only assumes a Java run time environment. Custom
actions provide access to the attribute values and to their body; they can be nested and theil
bodies can include scripting elements.

Scripting Languages

Scripting elements are commonly used to manipulate objects and to perform computation that
affects the content generated. There are three classes of scripting eleletbartations,

scriptlets andexpressions. Declarations are used to declare scripting language constructs that
are available to all other scripting elemer8s.iptlets are used to describe actions to be
performed in response to some request. Scriplets that are program fragments can also be use
to do things like iterations and conditional execution of other elements in the JSP page.
Expressions are complete expressions in the scripting language that get evaluated at response
time; commonly the result is converted into a string and then inserted into the output stream.

All JSP containers must support scripting elements based on the Java programming language
Additionally, JSP containers may also support other scripting languages. All such scripting
languages must support:

¢ Manipulation of Java objects.
« Invocation of methods on Java objects.
« Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements based on the Java
programming language is given in Chapter 4.

The semantics for other scripting languages are not precisely defined in this version of the
specification, which means that portability across implementations cannot be guaranteed.
Precise definitions may be given for other languages in the future.

Objects and Variables

An object may be made accessible to code in the scripting elements through a scripting
language variable. An element can define scripting variables in two places: after its start tag
and after its end tag. The variables will contain at process request-time a reference to the
object defined by the element, although other references exist dependingsoopthef the

object (see Section 1.4.3, “Objects and Scopes”).

Overview 26

1.4.8

1.4.9

An element type indicates the name and type of such variables although details on the name
of the variable may depend on the Scripting Language. The scripting language may also
affect how different features of the object are exposed; for example, in the JavaBeans
specification, properties are exposed via getter and setter methods, while these are available
directly in the JavaScript”" programming language.

The exact rules for the visibility of the variables are scripting language specific. Chapter 4
defines the rules for when the | anguage attribute of the page directive is “java”.

Scripts, Actions, and Beans

Scripting elements, actions and Beans are all mechanisms that can be used to describe
dynamic behavior in JSP pages. Different authors and authoring tools can use these
mechanisms in different ways based on their needs and their preferences. The JSP
specification does not restrict their use but this section provides some guidelines that may be
useful to understand their relative strengths.

Beans are a well-known and well-supported component framework for the Java platform that
can be accessed easily from the Java programming language and other JSP page scripting
languages. Some JSP page authors, or their support organizations, may create or reuse Bean
components to use from their JSP pages.

Actions provide an abstraction that can be used to easily encapsulate common actions.
Actions typically create and / or act on (server-side) objects, often Beans.

The JSP specification provides some standard actions that can be used to interact with any
Bean. If the Bean is extended so it implementsTihg interface, then the Bean becomes a

tag handler and it can be used directly in the JSP page with improved integration into the
template data.

Scripting elements are very flexible; that is their power but also their danger as they can
make hard understanding and maintain a page that uses them extensively; they may also
make it hard for an authoring tool. In some development contexts, JSP pages will mostly
contain only actions (standard or custom) with scripting elements only used as a “gluing”
mechanism that can be used to “fill-in” the actions that are described using actions (and
Beans and EJB components). In other development contexts JSP pages may contain
significant amounts of scripting elements.

JSP, HTML, and XML

The JSP specification is designed to support the dynamic creation of several types of
structured documents, especially those using HTML and XML.

27 JavaServer Pages 1.1 Specification « November 30, 1999

In general, a JSP page uses some data sent to the server in an HTTP request (for example, by
a QUERY argument or a POST method) to interact with information aready stored on the
server, and then dynamically creates some content which is then sent back to the client. The
content can be organized in some standard format (like HTML, DHTML, XHTML, XML,
etc.), in some ad-hoc structured text format, or not at all.

There is another relationship between JSP and XML: a JSP page has a standard translation
into avalid XML document. This translation is useful because it provides a standard
mechanism to use XML tools and APIs to read, manipulate, and author JSP documents. The
translation is defined in Chapter 7. JSP 1.1 processors are not required to accept JSP pages in
this standard XML syntax, but this may be required in a future version of the JSP
specification.

1.5

Web Applications

A prototypical Web application can be composed from:

« Java Runtime Environment(s) running in the server (required)

o JSP page(s), that handle requests and generate dynamic content

» Servlet(s), that handle requests and generate dynamic content

» Server-side JavaBeans components that encapsulate behavior and state

e Static HTML, DHTML, XHTML, XML and similar pages.

« Client-side Java Applets, JavaBeans components, and arbitrary Java class files

» Java Runtime Environment(s) (downloadable via the Plugin) running in client(s)
JSP 1.1 supports portable packaging and deployment of Web Applications through the
Servlet 2.2 specification. The JavaServer Pages specification inherits from the Servlet

specification the concepts of Applications, ServletContexts, Sessions, Requests and
Responses. See that specification for more details.

1.6

Chapter 1

Application Model

JSP pages can be used in combination with Servlets, HTTP, HTML, XML, Applets,
JavaBeans components and Enterprise JavaBeans components to implement a broad variety
of application architecture(s) or models.

Overview 28

1.6.1

21/2

Simple -Tier Application

Browser

HTTP/HTML/XML

Java method invocation (JDBC)

1.6.2

29

The simple 2-tier model (accessing a database in the example above) describes the cgi-bin
replacement architecture that the Servlet model first enabled. This allows a JSP (or a Servlet)

to directly access some external resource (such as a database or legacy application) to service

a client’s request. The advantage of such a scheme is that it is simple to program, and allows
the page author to easily generate dynamic content based upon the request and state of the
resource(s). However this architecture does not scale for a large number of simultaneous
clients since each must establish/or share (ad-hoc) a (potentially scarce/expensive)
connection to the resource(s) in question.

N-tier Application

Browser

RMI/IIOP

HTTP/HTML/XML

JavaServer Pages 1.1 Specification « November 30, 1999

1.6.3

Chapter 1

Session EJB

In this model the application is composed of (n>=3) tiers, where the middle tier, the JSP,
interacts with the back end resources via an Enterprise JavaBeans component. The Enterprise
JavaBeans server and the EJB provide managed access to resources thus addressing the
performance issues. An EJB server will also support transactions and access to underlying
security mechanisms to simplify programming. Thisis the programming model supported by
the Java 2 Platform Enterprise Edition (J2EE).

Loosely Coupled Applications

RMI/1IOP

Session EJB

RMI/1IOP

RMI/1IOP

|
|
o |
intralinter/extranet |
In this model we have two loosely coupled applications (either on the same Intranet, or over
an Extranet or the Internet). These applications may be peers, or act as client or server for the
other. A common example of thisis supply chain applications between vendor enterprises. In
such situations it is important that each participant be isolated from changes in the
implementation of it's dependents. In order to achieve this loose coupling the applications do
not communicate using a fine grain imperative interface contract like those provided for by
RMI/IIOP or Java IDL. The applications communicate with each other via HTTP, using
either HTML or XML to/from a JSP page.

Overview 30

1.6.4

Using XML with JSP Technology

JSP
HTTPIXML) RMI/IIOP (XML)
XML Parser —»=DOM Scripts -} ------. .- »
Client Tags
XML

y -
| & AMVIL & __ o< ----------
Template
TTPHTML &| XM \(/ P RMI/IIOP (XML)
TL/XSL

The JavaServer Pages technology is an ideal way to describe processing of XML input and
output. Simple XML generation can be done by just writing the XML as static template
portions within the JSP page. Dynamic generation will be done through JavaBeans
components, Enterprise JavaBeans components, or via custom actions that generate XML.
Similarly, input XML can be received from POST or QUERY arguments and then sent
directly to JavaBeans components, Enterprise JavaBeans components, or custom actions, or
manipulated via the scripting.

There are two attributes of the JSP technology that make it specially suited for describing
XML processing. Oneisthat XML fragments can be described directly in the JSP page either
as templates for input into some XML-consuming component, or as templates for output to
be extended with some other XML fragments. Another attribute is that the tag extension
mechanism enables the creation of specific actions and directives that are targeted at useful
XML manipulation operations.

Future versions of the JSP specification may include several standard actions that will
support XML manipulation, including the transformation of the XML produced by the given
JSP page using XTL/XSL.

31 JavaServer Pages 1.1 Specification « November 30, 1999

1.6.5

Chapter 1

Redirecting Requests

create/update

Client

It is common that the data to be sent to the client varies significantly depending on properties
of the client that are either directly encoded in the request object or can be discovered based
on some user/client profile (e.g. stored in alogin database). In this case it is very convenient
to have the initial JSP page determine details about the request, perhaps create and/or update
some server-side objects, and then, if necessary, redirect the request to a different JSP page.

This programming model is supported by the underlying Servlet APIs. The properties of the
HTTP protocol are such that the redirect cannot be done if the response stream has started
being sent back to the client; this characteristic makes the description of some common
situations quite inconvenient. To address this, the JSP specification by default indicates
buffering on the output stream. The JSP page can redirect the request at any point before
flushing the output buffer.

Buffering is also very convenient for error page handling, since that is done by redirecting
the request.

Presentation JSP pages and Front JSP pages

In adight variation of this model, the front component (a Servlet or a JSP) only creates and/
or updates the server-side objects. In this organization, the front component does no
presentation at all; instead all presentation is done by a presentation component. Although
the front component could be written as a Servlet since it does no presentation, writing it as
a JSP page enables the use of custom actions for the creation and update of the server-side
objects. The presentation component will almost in all cases be a JSP page, and it will most
likely access the server-side objects through custom actions?.

1. Readers of the original JSP 0.92 draft will recognize the combindtiam tomponent is serviet and presentation
component isJSP” as the model 2 mentioned in that draft.

Overview 32

1.6.6 Including Requests

create/update
Rmuest &irver_
Client - e
en Response Objects

JSP/Serviet access/update

Another useful application model involves request includes. In this model, the request
reaches an initial JSP page. The page may start generating/composing some result but at
some point it may want to dynamically include the contents of some other page. These
contents may be static but may also be dynamically generated by some other JSP page,
Servlet class, or some legacy mechanism like ASP.

Although in some cases this inclusion model is applicable to presentation-dependent
contents, it is most often used in the context of a presentation-independent content, like when
the data generated is actually XML (which may be converted later into some other format
using, say, XSL).

33 JavaServer Pages 1.1 Specification « November 30, 1999

CHAPTER

Standard Syntax and Semantics

This chapter describes the core syntax and semantics of the JavaServer Pages (JSP) 1.1
Specification, including the standard actions.

2.1

2.1.1

2.1.2

General Syntax Rules

The following general syntax rules apply to all elements in JSP pages.

Elements and Template Data

A JSP page has some elements and some template data. The elements are instances of some
element types that are known to the JSP container; template data is everything else: i.e.
anything that the JSP container does not understand.

The type of an element describes its syntax and its semantics. If the element has attributes,
the type aso describes the attribute names, their valid types, and their interpretation. If the
element defines objects, the semantics includes what objects it defines and their types.

There are three types of elements: directive elements, scripting elements, and action
elements; the corresponding syntax is described below. Template data is uninterpreted; it is
usually passed through to the client, or to some processing component.

Element Syntax

Most of the JSP syntax is based on XML. Elements based on the XML syntax have either a
start tag (including the element name) possibly with attributes, an optional body, and a
matching end tag, or they have an empty tag possibly with attributes:

St andard Syntax and Semantics 34

2.1.3

2.1.4

2.1.5

35

<mytag attrl="attribute value” ...>
body
</mytag>

and
<mytab attrl="attribute value” .../>

JSP tags are case-sensitive, asin XML and XHTML.

Scripting elements and directives are written using a syntax that is easier to author by hand.
Elements using the alternative syntax are of the form <%.....%>.

All JSP pages have an equivalent valid XML document. A future JSP specification may
require for JSP containers to accept JSP pages as well as their equivalent XML documents.
Chapter 7 describes the XML equivalent syntax for the scripting elements and directives;
these XML element types are not intended to be used within a JSP page but in the equivalent
XML document.

Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start and end in the
same file. You cannot begin a tag in one file and end it in another.

This applies aso to elements in the alternate syntax. For example, a scriptlet has the syntax
<% scriptlet %>. Both the opening <% characters and the closing %>characters must be in
the same physical file.

Empty Elements

Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag.

Attribute Values

Following the XML specification, attribute values always appear quoted. Both single and
double quotes can be used. The entities & apos; and & quot; are available to describe single
and double quotes.

See also Section 2.12.1, “Request Time Attribute Values”.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.1.6 White Space

In HTML and XML, white space is usually not significant, with some exceptions. One

exception is that an XML file must start with the characters <?xmni , with no leading
whitespace characters.

This specification follows the whitespace behavior defined for XML, that is; all white space
within the body text of a document is not significant, but is preserved.

For example, since directives generate no data and apply globally to the JSP page, the
following input file is translated into the corresponding result file:

For this input,

<?xml version="1.0" ?>

This is the default value

<%@ page buffer="8kb” %>

The rest of the docunent goes here

The result is

<?xml version="1.0" ?>

note the empty line

The rest of the docunent goes here

As anot her exanpl e, for thisinput,

<% response.setContentType(“....");

note no white between
the two elements

whatever... %><?xml version="1.0" ?>

<%@ page buffer="8kb” %>

The rest of the docunent goes here

The result is

no leading space

<?xml version="1.0" ?>

note the empty line

The rest of the docunent goes here

Chapter 2 Standard Syntax and Semantics

36

2.2

2.2.1

2.2.2

37

Error Handling

There are two logical phases in the lifecycle/processing of a JavaServer Page source file:

« Trangation (or compilation) from JSP page source into a JSP page implementation class
file.

» Per client request processing by an instance of the JSP page implementation class.

Errors may occur at any point during processing of either phase. This section describes how
such errors are treated by a compliant implementation.

Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implementation class
using the Java technology by a JSP container can occur at any time between initial
deployment of the JSP page into the runtime environment of a JSP container, and the receipt
and processing of a client request for the target JSP page. If translation occurs prior to the
JSP container receiving a client request for the target (untranslated) JSP page then error
processing and notification isimplementation dependent. Fatal translation failures shall result
in subsequent client requests for the translation target to also be failed with the appropriate
error; for HTTP protocols, error status code 500 (Server Error).

Client Request Time Processing Errors

During the processing of client requests, arbitrary runtime errors can occur in either the body
of the JSP page implementation class or in some other code (Java or other implementation
programming language) called from the body of the JSP page implementation class. Such
errors are realized in the page implementation using the Java programming language
exception mechanism to signal their occurrence to caller(s) of the offending behavior™.

These exceptions may be caught and handled (as appropriate) in the body of the JSP page
implementation class.

However, any uncaught exceptions thrown from the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the

err or Page URL specified by the offending JSP page (or the implementation default
behavior, if none is specified).

1. Notethat thisisindependent of scripting language; thisrequiresthat unhandled errors occurring in ascripting language
environment used in aJSP container implementation to be signalled to the JSP page implementation classviathe Java
programming language exception mechanism.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

The offending j ava. | ang. Thr owabl e describing the error that occurred is stored in the

j avax. Ser vl et Request instance for the client request using the put At t ri but e()
method, using the nam¢ dvax. servl et.j sp. j spExcepti on”. Names starting with
the prefixes j'ava” and “j avax” are reserved by the different specifications of the Java
platform; the f avax. ser vl et ” prefix is used by the Servlet and JSP specifications.

If the er r or Page attribute of gpage directive names a URL that refers to another JSP, and
that JSP indicates that it is an error page (by settingdlge directive’'s i SErr or Page
attribute tot r ue) then the &xcepti on” implicit scripting language variable of that page
is initialized to the offendindhr owabl e reference.

2.3

Comments

There are two types of comments in a JSP page: comments to the JSP page itself,
documenting what the page is doing; and comments that are intended to appear in the
generated document sent to the client.

Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the requesting
client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP container. If the

generated comment is to have dynamic data, this can be obtained through an expression
syntax, as in:

<l-- comments <% expression % nore comments ... -->

JSP Comments

A JSP comment is of the form
<% - anything but a closing --% ... --%

The body of the content is ignored completely. Comments are useful for documentation but
also to “comment out” some portions of a JSP page. Note that JSP comments do not nest.

Note that an alternative way to place a “comment” in JSP is to do so by using the comment
mechanism of the scripting language. For example:

<% /** this is a conmment ... **| %

Chapter 2 Standard Syntax and Semantics 38

2.4

Quoting and Escape Conventions

The following quoting conventions apply to JSP pages. Anything else is not processed.

Quoting in Scripting Elements
e A literal %> is quoted by %\>

Quoting in Template Text
n A literal <% is quoted by <\%

Quoting in Attributes
e A‘isquoted asV

e A"is quoted as \"

e A\is quoted as \\

* A %> is quoted as %\>
* A <% is quoted as <\%

XML Representation

The quoting conventions are different to those of XML. Chapter 7 describes the details of the
transformation.

2.5

39

Overview of Semantics

A JSP page describes how to createsponse object from arequest object for a given

protocol, possibly creating and/or using some other objects. A JSP page is executed by a JSP
container; requests sent to a JSP page are delivered by the JSP container to quage JSP
implementation instance that is a subclass of Servlet (see Chapter 3).

JavaServer Pages 1.1 Specification ¢ November 30, 1999

25.1 Web Applications

A Web Application is a collection of resources that are available through some URLs. The
resources include JSP pages, Java Servlet classes, static pages and other Java technology-
based resources and classes to be used at the server-side as well as Java resources and classes
(like Applets, JavaBeans components, and others) which are to be downloaded for use by the
client. A Web Application is described in more detail in Chapter 9 of the Servlet 2.2
specification.

A Web Application contains a deployment descriptor web. xm that contains information
about the JSP pages, Servlets, and other resources used in the Web Application. The
Deployment Descriptor is described in detail in Chapter 13 of the Servlet 2.2 specification.

JSP 1.1 requires that all these resources are to be implicitly associated with and accessible
through a unique Ser vl et Cont ext instance, which is available as the appl i cati on
implicit object (Section 2.8). The JSP specification inherits the notions of a Web Application
from the Servlet 2.2 specification.

The application to which a JSP page belongs is reflected in the appl i cat i on object and
has impact on the semantics of the following elements:

e Thei ncl ude directive (Section 2.7.6)
e Thej sp:incl ude action element (Section 2.13.4).
e Thej sp: forward action (Section 2.13.5).

2.5.2 Relative URL Specifications within an Application

Elements may use relative URL specifications, which are called “URI paths” in the Servlet
2.1 specification. These paths are as in RFC 2396 specification; i.e. only the path part, no
scheme nor authority. Some examples are:

“myErrorPage.jsp”
“lerrorPages/SyntacticError.jsp”
“ftemplates/CopyrightTemplate.html”

When such a path starts with a “/”, it is to be interpreted by the application to which the JSP
page belongs; i.e. itSer vl et Cont ext object provides the base context URL. We call
these paths “context-relative paths”.

When such a path does not start with a “/”, it is to be interpreted relative to the current JSP
page: the current page is denoted by some path starting with “/” which is then modified by
the new specification to produce a new path that starts with “/”; this final path is the one
interpreted through th8er vl et Cont ext object. We call these paths “page-relative

paths”.

Chapter 2 Standard Syntax and Semantics 40

2.5.3

2.5.4

41

The JSP specification uniformly interprets all these paths in the context of the Web server
where the JSP page is deployed; i.e. the specification goes through a map translation. The
semantics applies to trandation-time phase (i.e. include directives, Section 2.7.6), and to
request-time phase (i.e. to include, Section 2.13.4, and forward, Section 2.13.5,actions).

If a specific tool can ascertain by some mechanism the status of the URL to resource maps at
deployment time, the tool can take advantage of this information.

With the appropriate assertions, the translation phase might be performed before deploying
the JSP page into the JSP container.

Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management and runtime
support for JSP pages and Servlet components. The term Web Container is synonymous to that
a JSP container.

A Web component is either a Servlet or a JSP page. A web component may use the services
of its container. The serviet element in aweb. xm deployment descriptor is used to
describe both types of web components; note that most JSP page components are defined
implicitly in the deployment descriptor through the use of an implicit .jsp extension mapping.

JSP Pages

A JSP page implementation class defines a _jspService() method mapping from the request
to the response object. Some details of this transformation are specific to the scripting
language used; see Chapter 4. Most details are not language specific and are described in this
chapter.

Most of the content of a JSP page is devoted to describing what data is written into the
output stream of the response (usually sent back to the client). The description is based on a
JspW it er object that isexposed through the implicit object out (see Section 2.8, “Implicit
Objects”). Its value varies:

 |Initially, out is a newJspW i t er object. This object may be different from the stream
object fromresponse.getWriter(), and may be considered to be interposed on the latter in
order to implement buffering (see Section 2.7.1, “The page Directive”). This igitrat
out object. JSP page authors are prohibited from writing directly to either the
PrintWiter orQutput St reamassociated with th8er vl et Response.

* Within the body of some actionsut may be temporarily re-assigned to a different
(nested) instance dfspW i t er object. Whether this is or is not the case depends on the
details of the actions semantics. Typically the content, or the results of processing the
content, of these temporary streams is appended to the stream previously referred to by

JavaServer Pages 1.1 Specification ¢ November 30, 1999

out, and out is subsequently re-assigned to refer to that previous (nesting) stream. Such
nested streams are always buffered, and require explicit flushing to a nesting stream or
discarding of their contents.

e |If theinitial out JspW i t er object is buffered, then depending upon the value of the
aut oFl ush attribute of the page directive, the content of that buffer will either be
automatically flushed out to the Ser vl et Response output stream to obviate overflow,
or an exception shall be thrown to signal buffer overflow. If theinitial out JspW i t er is
unbuffered, then content written to it will be passed directly through to the
Ser vl et Response output stream.

A JSP page can aso describe what should happen when some specific events occur. In JSP

1.1, the only events that can be described are initialization and destruction of the page; these

are described using “well-known method names” in declaration elements (see page 73).
Future specifications will likely define more events as well as a more structured mechanism
for describing the actions to take.

2.6

Template Text Semantics

The semantics aemplate (or uninterpreted) Text is very simple: the template text is passed
through to the currerdut JspW i t er implicit object, after applying the substitutions of
Section 2.4, “Quoting and Escape Conventions”.

2.7

Directives

Directives are messages to the JSP container. In JSP 1.1, directives have this syntax:
<%@ directive { attr="value” }* %

There may be optional white space after the “<%@” and before “%>".

This syntax is easy to type and concise but it is not XML-compatible. Section 7 describes the
mapping of directives into XML elements.

Directives do not produce any output into the curaitstream.

The remainder of this section describes the standard directives that are available on all
conforming JSP 1.1 implementations.

Chapter 2 Standard Syntax and Semantics 42

2.7.1

2.7.11

43

The page Directive

The page directive defines a number of page dependent attributes and communicates these
to the JSP container.

A trandation unit (JSP source file and any files included viathe i ncl ude directive) can
contain more than one instance of the page directive, al the attributes will apply to the
complete translation unit (i.e. page directives are position independent). However, there shall
be only one occurrence of any attribute/value defined by this directive in a given translation
unit with the exception of thei ‘frpor t ” attribute; multiple uses of this attribute are
cumulative (with ordered set union semantics). Other such multiple attribute/value
(re)definitions result in a fatal translation error.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP page:
<%@ page info="my latest JSP Example V1.1" %>

The following directive reguests no buffering, indicates that the page is thread safe, and
provides an error page.

<%@ page buffer="none” isThreadSafe="yes" errorPage="/oops.jsp” %>

The following directive indicates that the scripting language is based on Java, that the types
declared in the package com.myco are directly available to the scripting code, and that a
buffering of 16K should be used.

<%@ page language="java” import="com.myco.*" buffer="16k” %>

Syntax

<% page page directive_attr_Ilist %

page _directive_attr_list ::= {language=" scriptinglLanguage” }
{extends=" ¢l assNane” }
{import="" i nportList” }
{ session="truelfalse” }
{ buffer="none| si zekb” }
{ autoFlush="true| fal se” }
{isThreadSafe="true|false” }
{iinfo=" info_text”
{ errorPage=" error_url” }

JavaServer Pages 1.1 Specification ¢ November 30, 1999

{ isErrorPage="true|false” }
{ contentType="ctinfo” }

The details of the attributes are as follows:

| anguage

ext ends

Defines the scripting language to be used in the scriptlets, expression
scriptlets, and declarations within the body of the trandlation unit (the
JSP page and any files included using the i ncl ude directive below).

In JSP 1.1, the only defined and required scripting language value for
this attribute is J'ava”. This specification only describes the
semantics of scripts for when the value of the language attribute is

ava .

When j ava” is the value of the scripting language, the Java
Programming Language source code fragments used within the
translation unit are required to conform to the Java Programming
Language Specification in the way indicated in Chapter 4.

All scripting languages must provide some implicit objects that a JSP
page author can use in declarations, scriptlets, and expressions. The
specific objects that can be used are defined in Section 2.8, “Implicit
Objects™.”

All scripting languages must support the Java Runtime Environment
(JRE). All scripting languages must expose the Java technology object
model to the script environment, especially implicit variables,
JavaBeans component properties, and public methods.

Future versions of the JSP specification may define additional values
for the language attribute and all such values are reserved.

It is a fatal translation error for a directive with a rigaoa”
language attribute to appear after the first scripting element has been
encountered.

The value is afully qualified Java programming language class name,
that names the superclass of the class to which this JSP page is
transformed (see Chapter 3).

This attribute should not be used without careful consideration as it
restricts the ability of the JSP container to provide specialized
superclasses that may improve on the quality of rendered service. See
Section 5.8.1 for an alternate way to introduce objects into a JSP page
that does not have this drawback.

Chapter 2 Standard Syntax and Semantics 44

45

i mport

sessi on

buf f er

aut oFl ush

An import attribute describes the types that are available to the

scripting environment. The value is as in an import declaration in the

Java programming language, i.e. a (comma separated) list of either a

fully qualified Java programming language type name denoting that

type, or of a package name followed by the “.*” string, denoting all
the public types declared one in that package. The import list shall be
imported by the translated JSP page implementation and are thus
available to the scripting environment.

The default import list i$ ava. | ang. *,j avax. servl et . *,
javax. servl et.jsp.* andj avax. servl et. http. *.

This value is currently only defined when the value ofltheguage
directive is | ava”.

Indicates that the page requires participation in an (http) session.

If “t rue” then the implicit script language variable named
“sessi on” of typej avax. servl et. http. H t pSessi on
references the current/new session for the page.

If “f al se” then the page does not participate in a session; the
“sessi on” implicit variable is unavailable, and any reference to it
within the body of the JSP page is illegal and shall result in a fatal
translation error.

Default is ‘t rue”.

Specifies the buffering model for the initiadtit ” JspW i ter to
handle content output from the page.

If “none”, then there is no buffering and all output is written directly
through to theSer vl et Response PrintWiter.

If a buffer size is specified (eXRkb) then output is buffered with a
buffer size not less than that specified.

Depending upon the value of theut oFl ush” attribute, the contents
of this buffer is either automatically flushed, or an exception is raised,
when overflow would occur.

The default is buffered with an implementation buffer size of not less
than8kb.

Specifies whether the buffered output should be flushed automatically
(“t rue” value) when the buffer is filled, or whether an exception
should be raised {‘al se” value) to indicate buffer overflow.

The default is t'rue”.

Note: it is illegal to seaut oFl ush to “f al se” when
“buf f er =none”.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

i sThreadSaf e

info

i sErrorPage

Indicates the level of thread safety implemented in the page.

If “f al se” then the JSP container shall dispatch multiple outstanding
client requests, one at a time, in the order they were received, to the
page implementation for processing.

If “t r ue” then the JSP container may choose to dispatch multiple
outstanding client requests to the page simultaneously.

Page authors using ¥ ue” must ensure that they properly
synchronize access to page shared state.

Default is ‘t r ue”.

Note that even if thesThreadSafe attribute is f al se” the JSP page
author must ensure that access to any shared objects shared in either
the Ser vl et Cont ext or theHt t pSessi on are properly
synchronized. See Section 2.7.2

Defines an arbitrary string that is incorporated into the translated page,
that can subsequently be obtained from the page’s implementation of
Servl et . get Servl et | nfo() method.

Indicates if the current JSP page is intended to be the URL target of
another JSP pageés r or Page.

If “t r ue”, then the implicit script language variablexcepti on”
is defined and its value is a reference to the offendimgowabl e
from the source JSP page in error.

If “f al se” then the ‘&xcepti on” implicit variable is unavailable,
and any reference to it within the body of the JSP page is illegal and
shall result in a fatal translation error.

Default is ‘f al se”

Chapter 2 Standard Syntax and Semantics 46

2.7.2

47

error Page

cont ent Type

Defines a URL to aresource to which any Java programming language
Thr owabl e object(s) thrown but not caught by the page
implementation are forwarded to for error processing.

The provided URL spec is as in Section 2.5.2.

The resource named has to be a JSP page in this version of the
specification.

If the URL names another JSP page then, when invoked that JSP
page’s except i on implicit script variable shall contain a reference
to the originating uncaugfithr owabl e.

The default URL is implementation dependent.

Note theThr owabl e object is transferred by the throwing page
implementation to the error page implementation by saving the object
reference on the commder vl et Request object using the

set Attri but e() method, with a name of

“j avax.servlet.jsp.jspException”.

Note: if aut oFl ush=t r ue then if the contents of the initial

JspW i t er has been flushed to ti8er vl et Response output

stream then any subsequent attempt to dispatch an uncaught exception
from the offending page to @t r or Page may fail.

Defines the character encoding for the JSP page and for the response
of the JSP page and the MIME type for the response of the JSP page.

Values are either of the form “TYPE” or “TYPE; charset=CHARSET"
with an optional white space after the “;". CHARSET, if present, must
be the IANA value for a character encoding. TYPE is a MIME type,
see the IANA registry for useful values.

The default value for TYPE is “text/html|”; the default value for the
character encoding is 1ISO-8859-1.

See Section 2.7.4 for complete details on character encodings.

Synchronization |ssues

JSP Pages inherit the Servlet semantics as described in the Servlet 2.2 specification. In this
section we briefly summarize the threading and distribution issues from that specification, as

they apply to JSP pages.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

A Distributed Container is one capable of distributing Web components that are tagged as
distributable across different multiple Java Virtual Machines, perhaps running in different
hosts. A Distributable Application is one tagged as such in its Web deployment descriptor. A
Distributable JSP Page is one in a Distributable Application.

By default, there must be only one instance of a JSP page implementation class per JSP page
definition in a container (Section 3.2 of Servlet 2.2 spec). By default, an instance of a Web
Application must only be run on one Java Virtual Machine at any one time. This behavior
can be overridden by declaring the Application to be Distributable (Chapter 9 of Serviet 2.2.
specification).

A single threaded JSP page is one with a false value for itsi sThr eadSaf e attribute of apage
directive. If isThreadSafe="false” , the JSP page implementation shall implement
javax.servlet.SingleThreadModel , thus indicating that all requests dispatched to
that instance shall be delivered serialy to the service() method of the page implementation
class (Section 3.3.3.1 of Servlet 2.2 spec).

However, some implementation(s) may additionally use a pool consisting of multiple page
implementation class instances to do load balancing. Therefore, even when indicating that

the page is not thread safe, a page author cannot assume that all requests mapped to a

particular JSP page shall be delivered to the same instance of that page’s implementation
class. The consequence of this is that an author must assume that any mutable resources ne
private/unique to a particular page’s instance may be accessed/updated simultaneously by 2
or more instances; thus any static field values, objectssettsi on orappl i cati on

scope, or objects shared through some other (unspecified) mechanism by such instances mus
be accessed appropriately synchronized to avoid non-deterministic behaviors (Section 3.2.1
of Servlet 2.2 spec).

In the case of a Distributable JSP page, there is one instance of its JSP page implementatior
class per web component definition per Java Virtual Machine in a Distributed Container
(Section 3.2 of Servlet 2.2 spec).

If multiple web component definitions in the deployment descriptor indicate the same JSP
page, there will be multiple instances of the JSP page implementation class, with different
initialization parameters (Section 3.3.1 of Servlet 2.2 spec).

There is only one instance of tBer vl et Cont ext interface associated with each Web
Application deployed into a Web Container. In cases where the container is distributed over
many Java Virtual Machines, there is one instance per web application per Java Virtual
Machine (Section 4.1 of Servlet 2.2 spec).

Context Attributes exist locally to the Java Virtual Machine in which they were created and
placed. This prevents the ServletContext from being used as a distributed shared memory
store. If information needs to be shared between servlets running in a distributed
environment, that information should be placed in a session, a database, or in an Enterprise
JavaBean (Section 4.3.1 of Servlet 2.2 spec).

Chapter 2 Standard Syntax and Semantics 48

2.7.3

2.7.4

49

Within an application that is marked as distributable, all requests that are part of a session
can only be handled on a single Java Virtual Machine at any one time. In addition all objects
placed into the session must implement the Serializable interface. The servlet container may
throw an Illegal ArgumentException if a non serializable object is placed into the session
(Section 7.7.2 in Servlet 2.2 spec).

Specifying Content Types

A JSP page can use the cont ent Type attribute of the page directive to indicate the content

type of the response it provides to requests. Since this value is part of a directive, a given

page will always provide the same content type. If a page determines that the response

should be of a different content type, it should do so “early”, determine what other JSP page
or Servlet will handle this request and it should forward the request to the other JSP page or
Servlet.

A registry of content types names is kept by IANA. See:

ftp://venera.isi.edu/in-notes/iana/assignments/media-types/media-types

Delivering Localized Content

The Java Platform support for localized content is based on a uniform representation of text
internally as Unicode 2.0 (ISO010646) characters and the support for a number of character
encodings to and from Unicode.

Any Java Virtual Machine (JVM) must support Unicode and Latin-1 encodings but most
support many more. The character encodings supported by the JVM from Sun are described
at:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

The JSP 1.1 specification assumes that JSP pages that will deliver content in a given
character encoding will be written in that character encoding. In particular, the

cont ent Type attribute of thepage directive describes both the character encoding of the
JSP page and the character encoding of the resulting stream.

The valid names to describe the character encodings are those of IANA. They are described
at:

ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

Thecont ent Type attribute must only be used when the character encoding is organized
such that ASCII characters stand for themselves, at least untibtiteent Type attribute is
found. The directive containing tfeont ent Ty pe attribute should appear as early as
possible in the JSP page.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

The default character set encoding is |SO-8859-1 (also known as latin-1).

A JSP container may use some implementation-dependent heuristics and/or structure to
determine what is the expected character encoding of a JSP page and then verify that
cont ent Type attribute is as expected.

A JSP container will raise a translation-time error if an unsupported character encoding is
reguested.

See Section B.1 for some implementation notes.

2.7.5 Including Data in JSP Pages
Including datais a significant part of the tasks in a JSP page. Accordingly, the JSP 1.1
specification has two include mechanisms suited to different tasks. A summary of their
semantics is shown in TABLE 2-1.
TABLE 2-1 Summary of Include Mechanismsin JSP 1.1
Syntax What Phase Spec Object Description Section
<%@ include file=... %> directive trandation- virtua static Content is parsed by 276
time JSP container.
<jsp:include page= /> action request-time virtual static Content is not parsed; it 2.13.4
and isincluded in place.
dynamic

2.7.6

The Spec column describes what type of specification is valid to appear in the given element.
The JSP specification requires a relative URL spec as described in Section 2.5.2. The
reference is resolved by the Web/Application server and its URL map is involved.

Aninclude directive regards a resource like a JSP page as a static object; i.e. the bytesin the
JSP page are included. An include action regards a resource like a JSP page as a dynamic
object; i.e. the request is sent to that object and the result of processing it is included.

Thei ncl ude Directive

Thei ncl ude directive is used to substitute text and/or code at JSP page translation-time.
The <% @ include file=" rel ati veURLspec” %> directive inserts the text of the
specified resource into the .jsp file. The included file is subject to the access control
available to the JSP container. The f i | e attribute is as in Section 2.5.2.

Chapter 2 Standard Syntax and Semantics 50

2.76.1

2.7.7

51

A JSP container can include a mechanism for being notified if an included file changes, so
the container can recompile the JSP page. However, the JSP 1.1 specification does not have
away of directing the JSP container that included files have changed.

Examples

The following example requests the inclusion, at translation time, of a copyright file. The file
may have elements which will be processed too.

<%@ include file="copyright.html” %>

Syntax

<%@ include file=" rel ati veURLspec" %>

Thet agl i b Directive

The set of significant tags a JSP container interprets can be extended through a “tag library”.

Thet agl i b directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

The URI identifying a tag library may be any valid URI as long as it can be used to uniquely
identify the semantics of the tag library. A common mechanism is to encoding the version of
a tag library into its URI.

If a JSP container implementation cannot locate (following the rules described in
Section 5.3.1) a tag library description for a given URI, a fatal translation error shall result.

It is a fatal translation error for theagl i b directive to appear after actions using the prefix
introduced by the agl i b directive.

See Chapter 5 for more specification details, and Section B.2 for an implementation note.

Examples

In the following example, a tag library is introduced and made available to this page using
thesuper prefix; no other tags libraries should be introduced in this page using this prefix.
In this particular case, we assume the tag library includedvagi ¢ element type, which is
used within the page.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.7.7.1

<%@ taglib uri="http://www.mycorp/supertags” prefix="super” />
<super:doMagic>

</super.doMagic>

Syntax

<%@ taglib uri=" taglLi braryURI " prefix=" tagPrefix” %>
where the attributes are:

uri Either an absolute URI or arelative URI specification to be interpreted
as in Section 2.5.2 that uniquely identifies the tag library descriptor
associated with this prefix.

The URI is used to locate a description of the tag library as indicated
in Chapter 5.

tagPrefix Defines the prefix string in <pr ef i x>: <t agname> that is used to
distinguish a custom action, e.g <myPrefix:myTag>

prefixes jsp:, jspx:, java:, javax:, servlet:, sun:, and sunw: are reserved.
Empty prefixes are illegal in this version of the specification.
A fatal translation-time error will result if the JSP page translator encounters a tag with name

prefix:Name using a prefix introduced using the taglib directive, and Name is not recognized
by the corresponding tag library.

2.8

Implicit Objects

When you author JSP pages, you have access to certain implicit objects that are always
available for use within scriptlets and expressions, without being declared first. All scripting
languages are required to provide access to these objects.

Chapter 2 Standard Syntax and Semantics 52

Each implicit object has a class or interface type defined in a core Java technology or Java
Servlet API package, as shown in TABLE 2-2.

TABLE 2-2 Implicit Objects Available in JSP Pages

Implicit Variable Of Type What It Represents Scope
request protocol dependent subtype of: The request triggering the reguest
j avax. servl et. Servl et Request service invocation.
eg:
j avax. servlet. H t pServl et Request
response protocol dependent subtype of: The response to the request. page
j avax. servl et. Servl et Response
eg:
j avax. servlet. H t pServl et Response
pageCont ext javax.servlet.jsp. PageCont ext The page context for this JSP page
page.
sessi on javax. servlet. http. H t pSessi on The session object created for session

the requesting client (if any).

This variable is only valid for
Http protocols.

application javax.servlet. Servl et Context The servlet context obtained application
from the servlet configuration
object (asin the call
get Servl et Confi g(). get

Context ())

out javax.servlet.jsp.JspWiter An object that writes into the page
output stream.

config javax. servl et. Servl et Config The Ser vl et Conf i g for this page
JSP page

page java. |l ang. Obj ect the instance of this page’s page

implementation class processing
the current requebt

1. When the scripting language is “java” then “page” is a synonym for “this” in the body of the page.

53 JavaServer Pages 1.1 Specification ¢ November 30, 1999

In addition, in an error page, you can access the except i on implicit object, described in
TABLE 2-3.

TABLE 2-3 Implicit Objects Available in Error Pages

Implicit Variable Of Type What It Represents scope
exception java. |l ang. Throwabl e The uncaught Thr owabl e that page
resulted in the error page being
invoked.

Object names with prefixesj sp, _j sp,j spx and _j spx, in any combination of upper and
lower case, are reserved by the JSP specification.

See Section 5.8.1 for some non-normative conventions for the introduction of new implicit
objects.

2.9 The pageContext Object

A PageCont ext provides an object that encapsulates implementation-dependent features
and provides convenience methods. A JSP page implementation class can use a

PageCont ext to run unmodified in any compliant JSP container while taking advantage of
implementation-specific improvements like high performance JspW i t er s. Generating such
an implementation is not a requirement of JSP 1.1 compliant containers, athough providing
the pageCont ext implicit object is.

See Appendix 6 for more details.

2.10 Scripting Elements

The JSP 1.1 specification describes three scripting language elements—declarations,

scriptlets, and expressions. A scripting language precisely defines the semantics for these
elements but, informally, a declaration declares elements, a scriptlet is a statement fragment,
and an expression is a complete language expression. The scripting language used in the
current page is given by the value of thenguage directive (see Section 2.7.1, “The page
Directive”). In JSP 1.1, the only value defined'jesva”

Each scripting element has a “<%”-based syntax as follows:

Chapter 2 Standard Syntax and Semantics 54

2.10.1

2.10.2

55

<% this is a declaration %
<%this is a scriptlet %
<% this is an expression %

White space is optional after “<%!”, “<%”, and “<%=", and before “%>".

The equivalent XML elements for these scripting elements are described in Section 7.4.

Declarations

Declarations are used to declare variables and methods in the scripting language used in a
JSP page. A declaration should be a complete declarative statement, or sequence thereof,
according to the syntax of the scripting language specified.

Declarations do not produce any output into the curahstream.

Declarations are initialized when the JSP page is initialized and are made available to other
declarations, scriptlets, and expressions.

Examples

For example, the first declaration below declares an integer, and initializes it to zero; while
the second declaration declares a method.

<% int i =0; %

<%! public String f(int i) {if (i<3) return(“...”); ... } %>

Syntax
<% declaration(s) %

Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting language specified
inthe | anguage directive. Whether the code fragment is legal depends on the details of the
scripting language; see Chapter 4.

Scriptlets are executed at request-processing time. Whether or not they produce any output
into the out stream depends on the actual code in the scriptlet. Scriptlets can have side-
effects, modifying the objects visible in them.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.10.3

When all scriptlet fragmentsin a given translation unit are combined in the order they appear
in the JSP page, they shall yield a valid statement or sequence thereof, in the specified
scripting language.

If you want to use the % character sequence as literal charactersin a scriptlet, rather than to
end the scriptlet, you can escape them by typing % >.

Examples

Here is a simple example where the page changed dynamically depending on the time of day.

<%if (Cal endar.getlnstance(). get(Cal endar. AM PM == Cal endar. AM {%
Good Mbrni ng

<%} else { %

Good Afternoon

<%} %

Syntax
<% scriptlet %

Expressions

An expression element in a JSP page is a scripting language expression that is evaluated and
the result is coerced to a St ri ng which is subsequently emitted into the current out
JspW it er object.

If the result of the expression cannot be coercedto a St ri ng then either a translation time
error shall occur, or, if the coercion cannot be detected during trandlation, a
Cl assCast Except i on shall be raised at request time.

A scripting language may support side-effects in expressions. If so, they take effect when the
expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If the
expressions appear in more than one run-time attribute, they are evaluated left-to-right in the
tag. An expression might change the value of the out object, although this is not something
to be done lightly.

The contents of an expression must be a complete expression in the scripting language in
which they are written.

Expressions are evaluated at HTTP processing time. The value of an expression is converted
to a String and inserted at the proper position in the .j sp file.

Chapter 2 Standard Syntax and Semantics 56

Examples

In the next example, the current date is inserted.
<% (new java.util.Date()).toLocal eString() %

Syntax

<% expresson %

2.11

Actions

Actions may affect the current out stream and use, modify and/or create objects. Actions may,
and often will, depend on the details of the specific request object received by the JSP page.

The JSP specification includes some action types that are standard and must be implemented
by all conforming JSP containers. New action types are introduced using thet agl i b
directive.

The syntax for action elements is based on XML; the only transformation needed is due to
guoting conventions (see Section 7.5).

2.12

2.12.1

57

Tag Attribute Interpretation Semantics

Generally, all custom and standard action attributes and their values either remain
uninterpreted by, or have well defined action-type specific semantics known to, a conforming
JSP container. However there are two exceptions to this general rule: some attribute values
represent request-time attribute values and are processed by a conforming JSP container, and
the id and scope attributes have specia interpretation.

Request Time Attribute Values

Action elements (both standard and custom) can define named attributes and associated
values. Typically a JSP page treats these values as fixed and immutable but the JSP 1.1
provides a mechanism to describe a value that is computed at request time.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.12.2

An attribute value of the form "<%= scriptlet_expr %>" or ‘<%= scriptlet_expr %> denotes
arequest-time attribute value. The value denoted is that of the scriptlet expression involved.
Request-time attribute values can only be used in actions. If there are more than one such
attribute in a tag, the expressions are evaluated left-to-right.

Only attribute values can be denoted this way (e.g. the name of the attribute is always an
explicit name), and the expression must appear by itself (e.g. multiple expressions, and
mixing of expressions and string constants are not permitted; instead perform these
operations within the expression).

The resulting value of the expression depends upon the expected type of the attribute’s value.
The type of an action element indicates the valid Java programming languag type for each
attribute value; the default jsava. | ang. Stri ng.

By default, all attributes have page translation-time semantics. Attempting to specify a
scriptlet expression as a value for an attribute that has page translation time semantics is
illegal, and will result in a fatal translation error. The type of an action element indicates
whether a given attribute will accept request-time attribute values.

Most attributes in the actions defined in the JSP 1.1 specification have page translation-time
semantics.

The following attributes accept request-time attribute expressions:

e Theval ue andbeanNane attributes of sp: set Property (2.13.2).

e Thepage attribute ofj sp: i ncl ude (2.13.4).

e Thepage attribute ofj sp: f orwar d (2.13.5).

e Theval ue attribute ofj sp: param (2. 13. 6) .

The i d Attribute

Theid=" nane” attribute/value tuple in an element has special meaning to a JSP container,
both at page translation time, and at client request processing time; in particular:

» the nanme must be unique within the translation unit, and identifies the particular element
in which it appears to the JSP container and page.

Duplicate i d's found in the same translation unit shall result in a fatal translation error.

« In addition, if the action type creates one or more object instance at client request
processing time, one of these objects will usually be associated by the JSP container with
the named value and can be accessed via that name in various contexts through the
pagecont ext object described later in this specification.

Furthermore, the@ane is also used to expose a variable (name) in the page’s scripting
language environment. The scope of this scripting language dependent variable is
dependent upon the scoping rules and capabilities of the actual scripting language used in
the page. Note that this implies that thene value syntax shall comply with the variable
naming syntax rules of the scripting language used in the page.

Chapter 2 Standard Syntax and Semantics 58

2.12.3

59

Chapter 4 provides details for the case where the language attribute is "java”

For example, the <jsp:usebean id=" nane” class=" cl assNane” ...[> action
defined later herein uses this mechanism in order to, possibly instantiate, and subsequently
expose the named JavaBeans component to a page at client request processing time.

For example:
<% { // introduce a new bl ock %

<jsp:useBean id="customer” class="com.myco.Customer” />

<%
/ *
* the tag above creates or obtains the Customer Bean
* reference, associates it with the name “customer” in the
* PageContext, and declares a Java programming language
* variable of the
* same name initialized to the object reference in this
* block’s scope.
*/
%>

<% custoner. get Nane(); %
<%}/l close the block %

<%

Il the variable custoner is out of scope now but

// the object is still valid (and accessi bl e via pageCont ext)
%>

The scope Attribute

The scope="page|request|session|application” attribute/value tuple is
associated with, and modifies the behavior of the i d attribute described above (it has both
tranglation time and client request processing time semantics). In particular it describes the
namespace, the implicit lifecycle of the object reference associated with the nane, and the
APIs used to access this association, as follows:

JavaServer Pages 1.1 Specification ¢ November 30, 1999

page

request

sessi on

appl i cation

The named object is available from the
j avax. servl et.jsp. PageCont ext for the current page.

This reference shall be discarded upon completion of the current
request by the page body.

Itisillegal to change the instance object associated, such that its
runtime type is a subset of the type of the current object previously
associated.

The named object is available from the current page’s
Ser vl et Request object using thget Attri but e(nane)
method.

This reference shall be discarded upon completion of the current client
request.

It is illegal to change the value of an instance object so associated,
such that its runtime type is a subset of the type(s) of the object
previously so associated.

The named object is available from the current padefpSessi on
object (which can in turn be obtained from Ber vl et Request
object) using th@et Val ue(nanme) method.

This reference shall be discarded upon invalidation of the current
session.

It is lllegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.

Note it is a fatal translation error to attempt to 88ssi on scope
when the JSP page so attempting has declared, viet@epage

%> directive (see later) that it does not participate in a
sessi on.

The named object is available from the current page’s
Ser vl et Cont ext object using thget Att ri but e(nane)
method.

This reference shall be discarded upon reclamation of the
Ser vl et Cont ext .

It is lllegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.

Chapter 2 Standard Syntax and Semantics 60

2.13 Standard Actions

The JSP 1.1 specification defines some standard action types that are always available,
regardless of the version of the JSP container or Web server the devel oper uses. The standard
action types are in addition to any custom types specific to a given JSP container
implementation.

2.13.1 <jsp:useBean>

A j sp: useBean action associates an instance of a Java programming language object
defined within a given scope available with agiveni d via anewly declared scripting
variable of the samei d.

Thej sp: useBean action is quite flexible; its exact semantics depends on the attributes
given. The basic semantic tries to find an existing object using i d and scope; if it is not
found it will attempt to create the object using the other attributes. It is aso possible to use
this action only to give alocal name to an object define elsewhere, as in another JSP page or
in a Servlet; this can be done by using the t ype attribute and not providing neither cl ass
nor beanNane attributes.

At least one of t ype and cl ass must be present, and it is not valid to provide both cl ass
and beanNane. If t ype and cl ass are present, cl ass must be assignable (in the Java
platform sense) to t ype; failureto do so is a translation-time error.

The attribute beanNanme is the name of a Bean, as specified in the JavaBeans specification

for an argument to the instantiate() method in java.beans.Beans. l.e. it is of the form “a.b.c”,
which may be either a class, or the name of a resource of the form “a/b/c.ser” that will be
resolved in the current ClassLoader. If this is not true, a request-time exception, as indicated
in the semantics of instantiate() will be raised. The value of this attribute can be a request-
time attribute expression.

The actions performed are:

1. Attempt to locate an object based on the attribute valuks §cope). The inspection is
done appropriately synchronized per scope namespace to avoid non-deterministic
behavior.

2. Define a scripting language variable with the givenin the current lexical scope of the
scripting language of the specifieg pe (if given) orcl ass (if type is not given).

3. If the object is found, the variable’s value is initialized with a reference to the located
object, cast to the specified/pe. If the cast fails, a
j ava. |l ang. Cl assCast Except i on shall occur. This completes the processing of
thisuseBean action.

61 JavaServer Pages 1.1 Specification ¢ November 30, 1999

If thej sp: useBean element had a non-empty body it isignored. This completes the
processing of thisuseBean action.

4. If the object is not found in the specified scope and neither class nor beanName are given,
ajava. |l ang. I nstantiati onExcepti on shall occur. This completes the
processing of thisuseBean action.

5. If the object is not found in the specified scope; and the cl ass specified names a hon-
abstract class that defines a public no-args constructor, then that class is instantiated, and
the new object reference is associated the with the scripting variable and with the
specified name in the specified scope using the appropriate scope dependent association
mechanism (see PageCont ext). After this, step 7 is performed.

If the object is not found, and the class is either abstract, ani nt er f ace, or no public
no-args constructor is defined therein, then a

java.lang. |l nstantiati onExcepti on shall occur. This completes the processing
of thisuseBean action.

6. If the object is not found in the specified scope; and beanNane is given, then the method
instantiate() of j ava. beans. Beans will be invoked with the ClassLoader of the
Servlet object and the beanName as arguments. If the method succeeds, the new object
reference is associated the with the scripting variable and with the specified name in the
specified scope using the appropriate scope dependent association mechanism (see
PageCont ext). After this, step 7 is performed.

7. If thej sp: useBean element has a non-empty body, the body is processed. The variable
isinitialized and available within the scope of the body. The text of the body is treated as
elsewhere; if there is template text it will be passed through to the out stream; scriptlets
and action tags will be evaluated.

A common use of a non-empty body is to complete initializing the created instance; in
that case the body will likely containj sp: set Property actions and scriptlets. This
completes the processing of this useBean action.

Examples

In the following example, a Bean with name “connection” of type
“com nyco. nmyapp. Connecti on” is available after this element; either because it was
already created or because it is newly created.

<jsp:useBean id="connection” class="com.myco.myapp.Connection” />

In this next example, thet i meout property is set to 33 if the Bean was instantiated.

<jsp:useBean id="connection” class="com.myco.myapp.Connection”>
<jsp:setProperty name="connection” property="timeout” value="33">
</jsp:useBean>

Chapter 2 Standard Syntax and Semantics 62

In our final example, the object should have been present in the session. If so, it is given the
local name wombat with Worrbat Type. A Cl assCast Except i on may be raised if the
object is of the wrong class, and an | nst anti at i onExcepti on may be raised if the
object is not defined.

<jsp:useBean id="wombat” type="my.WombatType” scope="session"/>

21311 Syntax

This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id=" nane" scope="page|request|session|application”
t ypeSpec />
t ypeSpec ::=class=" cl assNane” |

class=" cl assNane”type=" typeNane” |

type=" typeNane” class=" cl assNane” |

beanName=" beanNane” type=" t ypeNane” |
type=" typeNane’ beanName=" beanNane” |
type=" t ypeNane’

If the action has a body, it is of the form:
<jsp:useBean id=" nane" scope="page|request|session|application”
t ypeSpec >
body
</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is created. Typicaly,
the body will contain either scriptlets or j sp: set Property tags that will be used to
modify the newly created object, but the contents of the body is not restricted.

The <jsp:useBean> tag has the following attributes:

id The name used to identify the object instance in the specified scope’s
namespaceand also the scripting variable name declared and
initialized with that object reference. The name specified is case
sensitive and shall conform to the current scripting language variable-
naming conventions.

scope The scope within which the reference is available. The default value is
page. See the description of the scope attribute defined earlier herein

63 JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.13.2

cl ass The fully qualified name of the class that defines the implementation of
the object. The class name is case sensitive.

If the class and beanName attributes are not specified the object must
be present in the given scope.

beanName The name of a Bean, as expected by the instantiate() method of the
j ava. beans. Beans class.

This attribute can accept a request-time attribute expression as a value.

type If specified, it defines the type of the scripting variable defined.

This allows the type of the scripting variable to be distinct from, but
related to, that of the implementation class specified.

The type is required to be either the class itself, a superclass of the
class, or an interface implemented by the class specified.

The object referenced is required to be of this type, otherwise a
java. |l ang. Cl assCast Excepti on shall occur at request time
when the assignment of the object referenced to the scripting variable
is attempted.

If unspecified, the value is the same as the value of the cl ass
attribute.

<jsp:setProperty>

Thej sp: set Property action sets the value of propertiesin a Bean. The nane attribute
denotes an object that must be defined before this action appears.

There are two variants of the jsp:setProperty action. Both variants set the values of one or
more properties in the Bean based on the type of the properties. The usual Bean introspection
is done to discover what properties are present, and, for each, its name, whether they are
simple or indexed, their type, and setter and getter methods.

Properties in a Bean can be set from one or more parameters in the request object, from a
String constant, or from a computed request-time expression. Simple and indexed properties
can be set using setProperty. The only types of properties that can be assigned to from String
constants and request parameter values are those listed in TABLE 2-4; the conversion applied
is that shown in the table. Request-time expressions can be assigned to properties of any
type; no automatic conversions will be performed.

When assigning values to indexed properties the value must be an array; the rules described
in the previous paragraph apply to the elements.

Chapter 2 Standard Syntax and Semantics 64

21321

65

A conversion failure leads to an error; the error may be at translation or at request-time.

TABLE 2-4 Valid assignments in jsp:setProperty

Property Type Conversion on String Value

boolean or Boolean As indicated in java.lang.Boolean.valueOf(String)
byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.Character.valueOf(String)
double or Double As indicated in java.lang.Double.valueOf(String)
int or Integer As indicated in java.lang.Integer.valueOf(String)
float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)

1. Thisneedsto be clarified before fina, since the conversion is dependent on a character encoding.

Examples

The following two elements set a value from the request parameter values.

<jsp:setProperty name="request” property="*" />
<jsp:setProperty name="user” property="user” param="username” />

The following element sets a property from avalue
<jsp:setProperty name="results” property="row” value="<%= i+1 %>" />

Syntax

<jsp:setProperty name=" beanNane" prop_expr [>
prop_expr = property="*" |
property=" propertyNane"|
property=" propertyNane” param="par anet er Nane"|

property=" propertyNane” value=" propertyVval ue”
propertyVal ue = string

The value propertyValue can also be a request-time attribute value, as described in Section 2.12.1,
“Request Time Attribute Values”.

propertyVal ue ::= expr_scriptlet!

1. See syntax for expression scriptlet “<%-= ... %>"

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.13.3

The <j sp: set Propert y> element has the following attributes:

nane

property

param

val ue

The name of a Bean instance defined by a <j sp: useBean> element or
some other element. The Bean instance must contain the property you
want to set. The defining element (in JSP 1.1 only a<j sp: useBean>
element) must appear before the <j sp: set Propert y> element in the
same file.

The name of the Bean property whose value you want to set

If you set propert yName to * then the tag will iterate over the
current Ser vl et Request parameters, matching parameter names
and value type(s) to property names and setter method type(s), setting
each matched property to the value of the matching parameter. If a
parameter has a value of ““, the corresponding property is not
modified.

The name of the request parameter whose value you want to give to a
Bean property. The name of the request parameter usually comes from a
Web form

If you omit par am the request parameter name is assumed to be the
same as the Bean property name

If the param is not set in the Request object, or if it has the value of ““,
thej sp: set Property element has no effect (a noop).

An action may not have botbar amandval ue attributes.

The value to assign to the given property.
This attribute can accept a request-time attribute expression as a value.

An action may not have botbar amandval ue attributes.

<jsp:getProperty>

An<j sp: get Pr opert y> action places the value of a Bean instance property, converted to
aString, intotheimplicit out object, from which you can display the value as output. The
Bean instance must be defined as indicated in the name attribute before this point in the page
(usually viaa useBean action).

The conversion to String is done as in the printin() methods, i.e. thet oSt ri ng() method
of the object is used for Object instances, and the primitive types are converted directly.

If the object is not found, a request-time exception is raised.

Chapter 2 Standard Syntax and Semantics 66

21331

2.13.4

67

Examples

<jsp:getProperty name="user” property="name” />

Syntax

<jsp:getProperty name=" namne” property=" propertyNanme’ [>

The attributes are:

name The name of the object instance from which the property is obtained.

property Names the property to get.

<jsp:include>

A <jsp:include .../>element provides for the inclusion of static and dynamic
resources in the same context as the current page. See TABLE 2-1 for a summary of include
facilities.

The resource is specified using a relativeURL spec that is interpreted in the context of the
Web server (i.e. it is mapped). See Section 2.5.2.

An included page only has access to the JspW i t er object and it cannot set headers. This
precludes invoking methods like set Cooki e(). A request-time Exception will be raised if
this constraint is not satisfied. The constraint is equivalent to the one imposed on the

i ncl ude() method of the Request Di spat cher class.

A j sp:incl ude action may have j sp: par amsubelements that can provide values for
some parameters in the request to be used for the inclusion.

Request processing resumes in the caling JSP page, once the inclusion is completed.

If the page output is buffered then the buffer is flushed prior to the inclusion. See Section B.4
for an implementation note. See Section 5.4.5 for limitations on flushing when out is not
the top-level JspW i ter.

Examples

<jsp:include page="/templates/copyright.html"/>

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2134.1

2.13.5

Syntax

<jsp:include page=" ur | Spec” flush="true"/>
and
<jsp:include page=" url Spec” flush="true">

{<jsp:param /> }*
</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the values in the
param subelements are used to augment the request for the purposes of the inclusion.

The valid attributes are:

page The URL is arelative urlSpec is asin Section 2.5.2.

Accepts areguest-time attribute value (which must evaluate to a String
that is arelative URL specification).

flush Mandatory boolean attribute. If the value is “true”, the buffer is
flushed. A “false” value is not valid in JSP 1.1.

<jsp:forward>

A <jsp:forward page="urlSpec " /> element allows the runtime dispatch of the
current reguest to a static resource, a JSP pages or a Java Servlet classin the same context as
the current page. A jsp:forward effectively terminates the execution of the current page. The
relative urlSpec is as in Section 2.5.2.

The request object will be adjusted according to the value of the page attribute.

A jsp:forward action may have jsp:param subelements that can provide values for
some parameters in the reguest to be used for the forwarding.

If the page output is buffered then the buffer is cleared prior to forwarding.

If the page output was unbuffered and anything has been written to it, an attempt to forward
the request will result inan | | | egal St at eExcepti on.

Examples

The following element might be used to forward to a static page based on some dynamic
condition.

<% String whereTo = “/templates/"+someValue; %>
<jsp:forward page='<%= whereTo %>’ />

Chapter 2 Standard Syntax and Semantics 68

2135.1

2.13.6

2.13.6.1

69

Syntax

<jsp:forward page=" rel ati veURLspec” I>
and
<jsp:forward page=" url Spec">

{ <jsp:param ... /> }*
<lisp:forward>

This tag allows the page author to cause the current request processing to be effected by the
specified attributes as follows:

page The URL is arelative urlSpec is as in Section 2.5.2.

Accepts arequest-time attribute value (which must evaluate to a String
that is arelative URL specification).

<jsp:param>

Thej sp: par amelement is used to provide key/value information. This element isused in
thej sp:include,jsp: forwardandj sp: pl ugi n elements.

When doing j sp: i ncl ude orj sp: f or war d, the included page or forwarded page will
see the original request object, with the original parameters augmented with the new
parameters, with new values taking precedence over existing values when applicable. The
scope of the new parameters is the jsp:include or jsp:forward call; i.e. in the case of an

j sp: i ncl ude the new parameters (and values) will not apply after the include. Thisisthe
same behavior asin the Ser vl et Request i ncl ude and f or war d methods (see Section
8.1.1 in the Servlet 2.2 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is specified for
forward, the forwarded reguest shall have A=bar,foo. Note that the new param has
precedence.

Syntax

<j sp: param nane="name" val ue="val ue" >

This action has two mandatory attributes: name and value. Name indicates the name of the
parameter, value, which may be a request-time expression, indicates its value.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

2.13.7

213.7.1

<jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains the appropriate
client browser dependent constructs (OBJECT or EMBED) that will result in the download
of the Java Plugin software (if required) and subsequent execution of the Applet or
JavaBeans component specified therein.

The <j sp: pl ugi n> tag is replaced by either an <obj ect > or <enbed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the response.
The attributes of the <j sp: pl ugi n> tag provide configuration data for the presentation of
the element, as indicated in the table below.

The <j sp: par ar> elements indicate the parameters to the Applet or JavaBeans
component.

The<j sp: fal | back> element indicates the content to be used by the client browser if the
plugin cannot be started (either because OBJECT or EMBED is not supported by the client
browser or due to some other problem). If the plugin can start but the Applet or JavaBeans
component cannot be found or started, a plugin specific message will be presented to the
user, most likely a popup window reporting a ClassNotFoundException

Examples

<jsp:plugin type=applet code="Molecule.class” codebase="/html” >
<jsp:params>
<jsp:param
name="molecule”
value="molecules/benzene.mol”/>
</jsp:params>
<jsp:fallback>
<p> unable to start plugin </p>
</jsp:fallback>
</jsp:plugin>

Syntax

<jsp:plugintype="bean|applet”
code=" obj ect Code"
codebase=" obj ect Codebase"

{align=" alignnent" }
{ archive=" archi velLi st" }
{height=" hei ght" }

{ hspace=" hspace" }

{ jreversion=" Jjreversion"}
{name=" conponent Nane" }
{vspace=" vspace" }

Chapter 2 Standard Syntax and Semantics 70

{ width="w dth" }
{ nspluginurl="url" }
{ iepluginurl="url" } >

{ <j sp: parans>
{ <j sp: param nane=" paraniNane" value=" par anval ue" /> }+
</jsp:params>}

{ <jsp:fallback> arbitrary_text <ljsp:fallback>}
</jsp:plugin>

type Identifies the type of the component; a Bean, or an Applet.

code As defined by HTML spec

codebase As defined by HTML spec

align As defined by HTML spec

archive As defined by HTML spec

hei ght As defined by HTML spec

hspace As defined by HTML spec

jreversion I dentifies the spec version number of the JRE the component requires
in order to operate; the default is: “1.1"

nane As defined by HTML spec

vspace As defined by HTML spec

title As defined by the HTML spec

wi dt h As defined by HTML spec

nspl ugi nurl URL where JRE plugin can be downloaded for Netscape Navigator,

default is implementation defined.

i epl ugi nurl URL where JRE plugin can be downloaded for IE, default is
implementation defined.

71 JavaServer Pages 1.1 Specification ¢ November 30, 1999

CHAPTER

3

The JSP Container

This chapter provides details on the contracts between a JSP container and a JSP page.

This chapter is independent on the Scripting Language used in the JSP page. Chapter 4
provides the details specific to when the | anguage directive has “java” as its value.

This chapter also presents the precompilation protocol (see Section 3.4).

JSP page implementation classes should use the JspFactory and PageContext classes so th
will take advantage of platform-specific implementations.

3.1

The JSP Page Model

As indicated in Section 1.4, “Overview of JSP Page Semantics”, a JSP page is executed by a
JSP container, which is installed on a Web Server or Web enabled Application Server. The
JSP container delivers requests from a client to a JSP page and responses from the JSP pa
to the client. The semantic model underlying JSP pages is that of a Servlet: a JSP page
describes how to create@sponse object from arequest object for a given protocol, possibly
creating and/or using in the process some other objects. A JSP page may also indicate how
some events (in JSP 1.1 ontyt anddestroy events) are to be handled.

The Protocol Seen by the Web Server

The entity that processeaquest objects creatingesponse objects should behave as if it were

a Java technology-based class; in this specification we will simply assume it is so. This class
must implement the Servlet protocol. It is the role of the JSP container to first locate the
appropriate instance of such a class and then to deliver requests to it according to the Servle
protocol. As indicated elsewhere, a JSP container may need to create such a class
dynamically from the JSP page source before delivering a request and response objects to i

The JSP Cont ai ner 72

73

Thus, Servlet defines the contract between the JSP container and the JSP page
implementation class. When the HTTP protocol is used, the contract is described by the
HttpServlet class. Most pages use the HTTP protocol, but other protocols are allowed by this
specification.

The Protocol Seen by the JSP Page Author

The JSP specification also defines the contract between the JSP container and the JSP page
author. Thisis, what assumptions can an author make for the actions described in the JSP

page.

The main portion of this contract isthe _jspService() method that is generated automatically
by the JSP container from the JSP page. The details of this contract is provided in Chapter 4.

The contract also describes how a JSP author can indicate that some actions must be taken
when the init() and destroy() methods of the page implementation occur. In JSP 1.1 thisis
done by defining methods with name jspinit() and jspDestroy() in a declaration scripting
element in the JSP page. Before the first time a request is delivered to a JSP page a jsplnit()
method, if present, will be called to prepare the page. Similarly, a JSP container can reclaim
the resources used by a JSP page at any time that a request is not being serviced by the JSP
page by invoking first its jspDestroy() method, if present.

A JSP page author may not (re)define any of the Servlet methods through a declaration
scripting element.

The JSP specification reserves the semantics of methods and variables starting with jsp, _jsp,
jspx and _jspx, in any combination of upper and lower case.

The HttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page author is aided
by requiring that the Servlet class corresponding to the JSP page must implement the
Ht t pJspPage interface (or the JspPage interface if the protocol is not HTTP).

JavaServer Pages 1.1 Specification ¢ November 30, 1999

FI GURE 3-1 Contracts between a JSP Page and a JSP Container.

JSP Container JSP Page

initevent ——» jsplnit <%!
public void jsplnit()...

request —p /.) public void jspDestroy()...
_jspService Vo>
response @ =w-—f—
<html>
Thisisthe response..
</html>

destroy event —f» (jspDestroy

REQUEST PROCESSING TRANSLATION PHASE
PHASE

The involved contracts are shown in FIGURE 3-1. We now revisit this whole process in more
detail.

3.2 JSP Page | mplementation Class

The JSP container creates a JSP page implementation class for each JSP page. The name of
the JSP page implementation class is implementation dependent.

The creation of the implementation class for a JSP page may be done solely by the JSP
container, or it may involve a superclass provided by the JSP page author through the use of
the extends attribute in the jsp directive. The extends mechanism is available for
sophisticated users and it should be used with extreme care as it restricts what some of the
decisions that a JSP container can take, e.g. to improve performance.

The JSP page implementation class will implement Ser vl et and the Ser vl et protocol
will be used to deliver requests to the class.

Chapter 3 The JSP Contai ner 74

321

A JSP page implementation class may depend on some support classes; if it does, and the
JSP page implementation class is packaged into a WAR, those classes will have to be
included in the packaged WAR so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server will
communicate using a certain protocol. The JSP container must then guarantee that requests
from and responses to the page use that protocol. Most JSP pages use HTTP, and their
implementation classes must implement the Ht t pJspPage interface, which extends
JspPage. If the protocol is not HTTP, then the class will implement an interface that
extends JspPage.

API Contracts

The contract between the JSP container and a Java class implementing a JSP page
corresponds to the Ser vl et interface; refer to the Servlet specification for details.

The contract between the JSP container and the JSP page author is described in TABLE 3-1.
The responsibility for adhering to this contract rests only on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp directive;
otherwise, the JSP page author guarantees that the superclass given in the extends attribute
supports this contract.

TABLE 3-1 How the JSP Container Processes JSP Pages

Comments

Methods the JSP Container Invokes

Method is optionally defined in JSP page. void jsplnit()

Method is invoked when the JSP page is

initialized.

When method is called all the methods in
servlet, including getServletConfig() are

available

Method is optionally defined in JSP page. voi d jspDestroy()

Method is invoked before destroying the

page.

Method may not be defined in JSP page. voi d _j spServi ce(<Servl et Request Subt ype>,
The JSP container automatically <Ser vl et ResponseSubt ype>) t hrows

generates this method, based on the

contents of the JSP page. | CException, ServletException

Method invoked at each client request.

75 JavaServer Pages 1.1 Specification ¢« November 30, 1999

3.2.2

3.2.3

Chapter 3

Request and Response Parameters

As shown in TABLE 3-1, the methods in the contract between the JSP container and the JSP
page require request and response parameters.

The formal type of the request parameter (which this specification calls

<Ser vl et Request Subt ype>) is an interface that extends

j avax. servl et. Ser vl et Request . The interface must define a protocol-dependent
request contract between the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification calls

<Ser vl et ResponseSubt ype>) is an interface that extends

j avax. servl et. Servl et Response. The interface must define a protocol-dependent
response contract between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent contract between
the JSP container and the class that implements the JSP page. The contract for HTTP is
defined by thej avax. servl et. http. H t pServl et Request and

javax. servl et. http. Ht pServl et Response interfaces.

The JspPage interface refers to these methods, but cannot describe syntactically the
methods involving the Ser vl et (Request, Response) subtypes. However, interfaces for
specific protocols that extend JspPage can, just as Ht t pJspPage describes them for the
HTTP protocol.

Note — JSP containers that conform to this specification (in both JSP page
implementation classes and JSP container runtime) must implement the r equest and
r esponse interfaces for the HTTP protocol as described in this section.

Omitting the ext ends Attribute

If the ext ends attribute of the | anguage directive (see Section 2.7.1, “The page
Directive”) in a JSP page is not used, the JSP container can generate any class that satisfie
the contract described TABLE 3-1 when it transforms the JSP page.

In the following code examplesODE EXAMPLE 3-1 illustrates a generic HTTP superclass
namedExanpl eHt t pSuper. CODE EXAMPLE 3-2 shows a subclass nameidsp1344 that
extendsExanpl eHt t pSuper and is the class generated from the JSP page. By using
separate j sp1344 andExanpl eHt t pSuper classes, the JSP page translator needs not
discover if the JSP page includes a declaration wathl ni t () orj spDestroy(); this
simplifies very significantly the implementation.

The JSP Cont ai ner 76

77

JavaSer ver

CODE EXAMPLE 3-1 A Generic HTTP Superclass

imports javax.servlet.*;
i mports javax.servlet. http.*;
i mports javax.servlet.jsp.*;

| **

* An exanpl e of a superclass for an HTTP JSP cl ass
*/

abstract class Exanpl eHt t pSuper inplenents HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jsplnit();

}

final public ServletConfig getServletConfig() {
return config;

}

/1 This one is not final so it can be overridden by a nore precise nethod
public String getServletlnfo() {
return “A Superclass for an HTTP JSP”; // maybe better?

}

final public void destroy() {
jspDestroy();

}

/**

* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

/I casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, resonse);

/**

* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*

abstract public void _jspService(HttpServletRequest request,
HttpServlietResponse response) throws ServletException, IOException;

Pages 1.1 Specification ¢ November 30, 1999

Chapt er

3

CODE EXAMPLE 3-2 The Java Class Generated From a JSP Page

imports javax.servlet.*;
i mports javax.servlet.http.*;
i mports javax.servlet.jsp.*;

/**

* An exanple of a class generated for a JSP.

* The nane of the class is unpredictable.

* W are assuming that this is an HTTP JSP page (like al nost all

*/
class _jspl344 extends Exanpl eHttpSuper {

/1 Next code inserted directly via declarations.

/1 Any of the follow ng pieces may or not be present
/1 if they are not defined here the superclass nethods
/1 will be used.

public void jsplnit() {....}
public void jspDestroy() {....}

/1 The next method is generated automatically by the
/1 JSP processor.
/'l body of JSP page

public void _jspService(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | OException {

/1 initialization of the inplicit variables
Ht t pSessi on sessi on = request. get Session();

Servl et Cont ext context =
get Servl et Config().get Servl et Context();

/1 for this exanple, we assune a buffered directive

JSPBuf feredWiter out = new
JSPBuUf f eredWiter(response.getWiter());

are)

/1 next is code fromscriptlets, expressions, and static text.

The JSP Cont ai ner 78

3.24

Using the ext ends Attribute

If the JSP page author uses ext ends, the generated class is identical to the one shown in
CODE EXAMPLE 3-2, except that the class name is the one specified in the ext ends attribute.

The contract on the JSP page implementation class does not change. The JSP container
should check (usually through reflection) that the provided superclass:

* Implements HttpJspPage if the protocol is HTTR, or JspPage otherwise.

» All of the methods in the Ser vI et interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided superclass
satisfies:

e Theservice() method of the Servlet API invokes the _j spSer vi ce() method.

e Theinit(ServletConfig) method stores the configuration, makes it available as
get Servl et Confi g, theninvokesj splnit.

e Thedest r oy method invokes j spDest r oy.

A JSP container may give afatal translation error if it detects that the provided superclass
does not satisfy these requirements, but most JSP containers will not check them.

3.3

Buffering

The JSP container buffers data (if the jsp directive specifies it using the buffer attribute) asit
is sent from the server to the client. Headers are not sent to the client until the first f | ush

method is invoked. Therefore, none of the operations that rely on headers, such as the

set Cont ent Type, redi r ect, or err or methods are valid until the f | ush method is

executed and the headers are sent.

JSP 1.1 includes a class that buffers and sends output,
javax.servlet.jsp.JspWiter. TheJspWiter classisusedinthe
_j spPageSer vi ce method as in the following example:

i nport javax.servlet.jsp.JspWiter;
static JspFactory _jspFactory = JspFactory. get Defaul t Factory();
_j spServi ce(<SRequest > request, <SResponse> response) {

// initialization of inplicit variables...

PageCont ext pageContext = _jspFactory. creat ePageCont ext (

this,
request,

79 JavaServer Pages 1.1 Specification ¢« November 30, 1999

response,

fal se,
PageCont ext . DEFAULT_BUFFER,
fal se
)
JSPWiter out = pageContext.getQut();
11
/1 the body goes here using "out"
...
out. flush();

}
You can find the complete listing of j avax. servl et.j sp. JspWi t er in Chapter 6.

With buffering turned on, you can still use a redirect method in a scriptlet in a.j sp file, by
invoking r esponse. redi rect (someURL) directly.

3.4

341

3.4.2

Chapter 3

Precompilation

A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 1.1 compliant
containers must support a simple precompilation protocol, as well as some basic reserved
parameter names. Note that the precompilation protocol should not be confused with the
notion of compiling a JSP page into a Servlet class (Appendix C).

Request Parameter Names

All request parameter names that start with the prefix "jsp" are reserved by the JSP
specification and should not be used by any user or implementation except as indicated by
the specification.

All JSPs pages should ignore (not depend on) any parameter that starts with "jsp_"

Precompilation Protocol

A request to a JSP page that has a request parameter with name "jsp_precompile" is a
precompilation request. The "jsp_precompile" parameter may have no value, or may have
values "true" or "false". In all cases, the request should not be delivered to the JSP page.

The JSP Cont ai ner 80

81

The intention of the precompilation request is that of a hint to the JSP container to
precompile the JSP page into its JSP page implementation class. The hint is conveyed by
given the parameter the value "true" or no value, but note that the request can be just ignored
inal cases.

For example:

1. ?sp_precompile

2. ?sp_precompile="true"

3. ?sp_precompile="false"

4, ?oobar="foobaz"&jsp_precompile="true"
5. ?foobar="foobaz"&jsp_precompile="false"

1, 2 and 4 are legal; the request will not be delivered to the page. 3 and 5 are legal; the
request will be delivered to the page with no changes.

6. ?jsp_precompile="foo"
Thisisillegal and will generate an HTTP error; 500 (Server error).

JavaServer Pages 1.1 Specification ¢ November 30, 1999

CHAPTER 4

Scripting

This chapter describes the details of the Scripting Elements when the language directive

value is “java”. The scripting language is based on the Java programming language (as
specified by “The Java Language Specification”), but note that there is no valid JSP page, or
a subset of a page, that is a valid Java program.

The details of the relationship between the scripting declarations, scriptlets, and scripting
expressions and the Java programming language is explained in detail in the following
sections. The description is in terms of the structure of the JSP page implementation class;
recall that a JSP container need not necessarily generate the JSP page implementation clas
but it must behave as if one existed.

4.1

Overall Structure

Some details of what makes a JSP page legal are very specific to the scripting language usec
in the page. This is especially complex since scriptlets are just language fragments, not
complete language statements.

Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementation class
defined byTABLE 4-1 (after applying all include directives), together with any other classes
defined by the JSP container, is a valid program for the given Java Platform.

Sun Microsystems reserves all names of the formp §gt * and {_}j spx_*, in any
combination of upper and lower case, for the JSP specification. Names of this form that are
not defined in this specification are reserved by Sun for future expansion.

Scripting 82

Implementation Flexibility

The transformations described in this Chapter need not be performed literally; an
implementation may want to implement things differently to provide better performance,
lower memory footprint, or other implementation attributes.

TABLE 4-1

Structure of the JavaProgramming Language Class

Optional imports clause as
indicated via jsp directive

SuperClass is either
selected by the JSP
container or by the JSP
author via jsp directive.
Name of class (_jspXXX)

is implementation
dependent.

Start of body of JSP page
implementation class

(1) Declaration Section

signature for generated
method

(2) Implicit Objects Section

(3) Main Section

close of _jspService
method

close of _jspXXX

i mport nanel

class _jspXXX extends SuperC ass

/! declarations ...

public void _jspService(<Servl et Request Subt ype> request,
<Ser vl et ResponseSubt ype> response)
throws Servl et Exception, | OException {

/1 code that defines and initializes request, response, page,
pageCont ext etc.

/1 code that defines request/response mappi ng

83 JavaServer Pages 1.1 Specification ¢ November 30, 1999

4.2 Declarations Section

The declarations section correspond to the declaration elements.

The contents of this section is determined by concatenating all the declarationsin the pagein
the order in which they appear.

4.3 Initialization Section

This section defines and initializes the implicit objects available to the JSP page. See
Section 2.8, “Implicit Objects”.

4.4 Main Section

This section provides the main mapping between a request and a response object.

The contents of code segment 2 is determined from scriptlets, expressions, and the text body
of the JSP page. These elements are processed sequentially; a translation for each one is
determined as indicated below, and its translation is inserted into this section. The translation
depends on the element type:

1. Template data is transformed into code that will place the template data into the stream
currently named by the implicit variabteut . All white space is preserved.

Ignoring quotation issues and performance issues, this corresponds to a statement of the
form:

out.print{emplate);
2. A scriptlet is transformed into its Java statement fragment.

3. Anexpression is transformed into a Java statement to insert the value of the expression,
converted tg ava. | ang. Stri ng if needed, into the stream currently named by the
implicit variableout . No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of the form:

out.printexpression);

Chapter 4 Scripting 84

4. An action defining one or more objects is transformed into one or more variable
declarations for these objects, together with code that initializes these variables. The
visibility of these variables is affected by other constructs, like the scriptlets.

The semantics of the action type determines the name of the variables (usually that of the
i d attribute, if present) and their type. The only standard action in the JSP 1.1
specification that defines objects is the jsp:usebean action; the name of the variable
introduced is that of thei d attribute, its type is that of the cl ass attribute.

Note that the value of the scope attribute does not affect the visibility of the variables
within the generated program, it only affects where (and thus for how long) there will be
additional references to the object denoted by the variable.

85 JavaServer Pages 1.1 Specification ¢ November 30, 1999

CHAPTER 5

Tag Extensions

This chapter describes the mechanisms for defining new actions in portable way and for
introducing new actions into a JSP page.

5.1

| ntroduction

A Tag Library abstracts some functionality by defining a specialized (sub)language that
enables a more natural use of that functionality within JSP pages. The actions introduced by
the Tag Library can be used by the JSP page author in JSP pages explicitly, when authoring
the page manually, or implicitly, when using an authoring tool. Tag Libraries are particularly
useful to authoring tools because they make intent explicit and the parameters expressed in
the action instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using thet agl i b
directive, and can then be used in the page using the prefix given by the directive. An action
can create new objects that can then be passed to other actions or can be manipulated
programmatically through an scripting element in the JSP page.

Tag libraries are portable: they can be used in any legal JSP page regardless of the scripting
language used in that page.

The tag extension mechanism includes information to:

» Execute a JSP page that uses the tag library.

e Author and modify a JSP page.

» Present the JSP page to the end user.

The JSP 1.1 specification mostly includes the first kind of information, plus basic
information of the other two kinds. Later releases of the JSP specification may provide

additional information; in the meanwhile, vendors may use vendor-specific information to
address their needs.

Tag Extensions 86

5.1.1

5.1.2

A Tab Library is described viaa Tag Library Descriptor, an XML document that is described
further below.

No custom directives can be described using the JSP 1.1 specification.

Goals

The tag extension mechanism described in this chapter addresses the following goals:
Portable - An action described in a tag library must be usable in any JSP container.

Smple - Unsophisticated users must be able to understand and use this mechanism. We
would like to make it very easy for vendors of functionality to expose it through actions.

Expressive - We want to enable a wide range of actions to be described in this mechanism,
including:
* Nested actions.

 Scripting elements inside the body.
 Creation, use and updating of scripting variables.

Usable from different scripting languages - Although the JSP specification currently only
defines the semantics for scripting based on the Java programming language, we want to
leave open other scripting languages.

Building upon existing concepts and machinery- We do not want to reinvent machinery that
exists elsewhere. Also, we want to avoid future conflicts whenever we can predict them.

Overview

The basic mechanism for defining the semantics of an action is that of atag handler. A tag
handler is a Java class that implements the Tag or Body Tag interfaces and that is the run-
time representation of a custom action.

The JSP page implementation class instantiates (or reuses) a tag handler object for each
action in the JSP page. This handler object is a Java object that implements the

javax. servl et.jsp.tagext. Tag interface. The handler object is responsible for the
interaction between the JSP page and additional server-side objects.

There are two main interfaces. Tag and Body Tag.

» Tag defines the basic methods that are needed in all tag handlers. These methods include
setter methods to initialize a tag handler with context data and with the attribute values of
the corresponding action, and the two methods: doSt art Tag() and doEndTag() .

* BodyTag provides two additional methods for when the tag handler wants to manipulate
its body. The two new methods are dol ni t Body() and doAft er Body() .

87 JavaServer Pages 1.1 Specification ¢ November 30, 1999

The use of interfaces simplifies taking an existing Java object and making it a tag handler.
There are also two support classes that can be used as base classes: TagSupport and
BodyTagSupport.

Smple Actions

In many cases, the tag handler only needs to use the tag handler’'s methodioSt art Tag()

which is invoked when the start tag is encountered. This method needs to access the
attributes of the tag and may also want to access information on the state of the JSP page;
this information is passed to the Tag object before the calb&i art Tag() through

several setter method calls.

ThedoEndTag() is similar todoSt art Tag() , except that it is invoked when the end tag
of the action is encountered. The result ofdle&ndTag invocation indicates whether the
remaining of the page is to be evaluated or not.

A particularly simple and frequent action is one that has an empty body (no text between the
start and the end tag). The Tag Library Descriptor can be used to indicate that the tag is
always intended to be empty; this leads to better error checking at translation time and to
better code quality in the JSP page implementation class.

Actions with Body

Recall that in general, the body of an action may contain other custom and core actions and
scripting elements, as well as uninterpreted template text.

In some cases, an action is only interested in “passing through” the content of the body. This
can be done using the simple Tag interface by using a special return value in
doStart Tag() .

If an action element can have a non-empty body and is interested in the content of that body,
the methodslol ni t Body() anddoAft er Body(), defined in the BodyTag interface are
involved.

The control of the evaluation is actually done based on the result of method invocations as
follows. ThedoSt art Tag() method is always invoked first and returnsi art value that
indicates if the body of the action should be evaluated or not. If so (EVAL_BODY_TAG
return), a nested stream of tyBedyCont ent is created and it is passed to the Boaly

object throughset BodyCont ent . Thendol ni t Body is invoked. Next the body is
evaluated, with the result going into the newly cred&edy Cont ent object. Finally the

doAf t er Body() method of the tag handler object is invoked.

If the invocation tadoSt art Tag() returned SKIP_BODY, the body is not evaluated at all.

ThedoBody() methods may use tiBodyCont ent object as it sees fit. For example, it
may convert it into a String and use it as an argument. Or it may do some filter action to it
before passing it through to the out stream. Or something else.

Chapter 5 Tag Extensions 88

A doAf t er Body() invocation returns an indication of whether further reevaluations of the
body text should be done by the JSP page; as in the case of doSt art Tag(), if
EVAL_BODY_TAG isreturned, the body is reevaluated, while a return value of
SKIP_BODY will stop reevaluations. Note that, since server-side objects (accessible via
pageContext, or through nested handlers) may have changed, each evaluation may produce
very different content to be added to the Body Cont ent object.

Cooperating Actions

Often the best way to describe some functionality is through several cooperating actions. For
example, an action may be used to describe information that |eads to the creation of some
server-side object, while another action may use that object elsewhere in the page. One way
for these actions to cooperate is explicitly, via using scripting variables: one action creates an
object and gives it a name, the other refers to it through this name. Scripting variables are
discussed briefly below.

Two actions can also cooperate implicitly using different conventions. For example, perhaps
the last action applies, or perhaps there is only one action of a given type per JSP page. A
more flexible and very convenient mechanism for action cooperation is using the nesting
structure to describe scoping. Each tag handler istold of its parent tag handler (if any) using
a setter method; the f i ndAncest or Wt hCl ass static method in TagSupport can then
be used to locate a tag handler with some given properties.

Actions Defining Scripting Variables

A custom action may create some server-side objects and make them available to the
scripting elements by creating or updating some scripting variables. The specific variables
thus effected may vary with the action instance. The details of this are described through
subclasses of j avax. servl et.jsp.tagext. TagExt ral nf o which are used at JSP
page trandation time. The TagExt r al nf o class provides methods that will indicate what
are the names and types of the scripting variables that will be assigned objects (at request
time) by the action. These methods are passed a TagData instance that describes the
attributes of a given action. The responsibility of the tag library author is to faithfully
indicate this information in the TagExtralnfo class; the corresponding Tag object must add
the objects to the pageContext object. It is the responsibility of the JSP page translator to
automatically supply all the required code to do the “synchronization” between the
pageObject values and the scripting variables.

5.1.3 Examples

This section outlines some simple, and common, uses of the tag extension mechanism. See
Appendix A for more details on these examples and for additional examples of custom
actions.

89 JavaServer Pages 1.1 Specification ¢ November 30, 1999

5131

5.1.3.2

5.1.3.3

5134

Call Functionality, no Body

This is probably the simplest example: just collect attributes and call into some action. The
only action involved is f 00, and in this case it should have no body. |.e something like:
<x:foo att1="..." att2="..." att3="..." />

In this case we would define a FooTag tag handler that extends TagSupport only

redefining doSt art Tag. The doSt ar t Tag method would take the attribute information,
perhaps interact with the PageCont ext data and invoke into the appropriate functionality.

The entry for this tag in the Tag Library Descriptor should indicate that the action must have
no body; no TagExt r al nf o classis needed.

Call Functionality, No Body, Define Object

In asimple variation of the previous example the action defines an object.
<x:bar id="nybar” attl="..."att2=".."att3="." />

After this, an object with name mybar is available to the scripting language.

The semantics of doSt art Tag() invocation is as before except that additionally it should
insert the appropriate object for the “mybar” entry into the pageContext.

The Tag Library Descriptor entry for this action needs to mentidagExt r al nf o class
that will be used to determine the scripting variables that will be created by the action; in this
case “mybar” (note that id must be a translation-time attribute).

Call Functionality, Define Object by Scope

In some cases, the previous example can also be described without using a TagExtralnfo by
having the bar action enclose the actions that would use the created object. In this case, the
defining action needs not indicate any id attribute but it must have a body:

<x:bar attil="..."att2=".."att3="..">
BODY
</ x: bar >

The nesting actions will invoke f i ndAncest or W t hCl ass to locate the bar handler
object.

Template Mechanisms

There are a number of “template” mechanisms in server-side frameworks. The simplest of
these mechanisms will take a “token” and replace it by some fixed replacement text (that can
be changed easily); more sophisticated mechanisms compute the replacement text, and can

Chapter 5 Tag Extensions 90

5.1.3.5

5.1.3.6

pass arguments for that computation. These mechanisms can be subsumed directly into an
empty-bodied action invocation, perhaps using attributes to describe the template and/or the
arguments for the computation.

An HTML quoting action

The final example is an action that takes its body and performs HTML quoting. In this case,
thedoSt art Tag() method will save away the value of the out implicit object and request
the evaluation of the body. The doAf t er Body() method will take the nested stream,
perform the quoting, and send it down to the saved out stream.

A useBean as in the JSP 0.92 specification

The 0.92 public draft of the JSP specification included a version of a useBean action with
avariation: if the Bean created included a pr ocessRequest (Ser vl et Request)
method then the method would be invoked. Observant readers will notice that a
processRequest () isaspecia caseof adoSt art Tag() astherequest object is one of
the objects available in pageCont ext .

5.2

5.2.1

Tag Library

A Tag Library is a collection of actions that encapsulate some functionality to be used from within
aJSP page. A Tag library is made availableto a JSP page viaat agl i b directive that identifies
the Tag Library viaa URI (Universal Resource Identifier).

The URI identifying atag library may be any valid URI aslong as it can be used to uniquely
identify the semantics of the tag library. A common mechanism is to encoding the version of
atag library into its URI.

The URI identifying the tag library is associated with a Tag Library Description (TLD) file
and with tag handler classes as indicated in Section 5.3 below.

Packaged Tag Libraries

JSP page authoring tools are required to accept a Tag Library that is packaged as a JAR file.
When packaged sot he JAR file must have a tag library descriptor file named META-INF/
taglib.tld.

91 JavaServer Pages 1.1 Specification « November 30, 1999

5.2.2

5.2.3

Location of Java Classes

The request-time Tag handler classes and the translation-time TagExtralnfo classes are just
Java classes. In a Web Application they must reside in the standard locations for Java
classes: either in a JAR file in the WEB-INF/lib directory or in a directory in the WEB-INF/
classes directory.

The previous rule indicates that a JAR containing a packaged tag libraries can be dropped
into the WEB-INF/lib directory to make its classes available at request time (and also at
tranglation time, see Section 5.3.2). The mapping between the URI and the TLD is explained
further below.

Tag Library directive

Thet agl i b directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

If a JSP container implementation cannot locate (following the rules described in
Section 5.3.1) atag library description for a given URI, afatal translation error shall result.

It isafatal translation error for thet agl i b directive to appear after actions using the prefix
introduced by the t agl i b directive.

5.3

Tag Library Descriptor

The Tag Library Descriptor (TLD) is an XML document that describes a tag library. The
TLD for atag library is used by a JSP container to interpret pages that includet agl i b
directives referring to that tag library. The TLD is also used by JSP page authoring tools that
will generate JSP pages that use a library, and by authors who do the same manually.

The TLD includes documentation on the library as awhole and on itsindividual tags, version
information on the JSP container and on the tag library, and information on each of the
actions defined in the tag library.

Each action in the library is described by giving its name, the class for its tag handler,
optional information on a TagExt r al nf o class, and information on all the attributes of the
action. Each valid attribute is mentioned explicitly, with indication on whether it is
mandatory or not, whether it can accept request-time expressions, and additional information.

Chapter 5 Tag Extensions 92

A TLD fileis useful as a descriptive mechanism for providing information on a Tag Library.
It has the advantage that it can be read by tools without having to instantiate objects or load
classes. The approach we follow conforms to the conventions used in other J2EE
technologies.

The DTD to the tag library descriptor is organized so that interesting elements have an
optional 1D attribute. This attribute can be used by other documents, like vendor-specific
documents, to provide annotations of the TLD information. An alternative approach, based
on XML name spaces have some interesting properties but it was not pursued in part for
consistency with the rest of the J2EE descriptors.

The official DTD is described at "http://java.sun.com/j2ee/dtds/web-jsptaglibrary _1_1.dtd"

5.3.1 L ocating a Tag Library Descriptor

The URI describing a Tag Library is mapped to a Tag Library Descriptor file though two
mechanisms: a map in web. xm described using the t agl i b element, and a default

mapping.

5311 Taglib map in web.xml

The map in web. xm is described using thet agl i b element of the Web Application
Deployment descriptor in WEB- | NF/ web. xml , as described in the Servlet 2.2 spec and in
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd".

A tagli b element has two subelementsigl i b-uri andt agli b-1ocati on.

taglib
A taglib is a subelement of web-app:

<! ELEMENT web-app taglib* >

The taglib element provides information on a tag library that is used by a JSP page within the
Web Application.

A taglib element has two subelements and one attribute:

<l ELEMENT taglib (taglib-uri, taglib-location) >
<I ATTLI ST taglib id |ID #l WPLI ED>

93 JavaServer Pages 1.1 Specification ¢ November 30, 1999

5.3.1.2

taglib-uri
A taglib-uri element describes a URI identifying a Tag Library used in the Web
Application.

<l ELEMENT taglib-uri (#PCDATA) >
PCDATA ::= a URI spec. It may be either an absolute URI
specification, or a relative URI as in Section 2.5.2.

taglib-location
A taglib-1ocati on contains the location (as a resource) where to find the Tag Library
Description File for this Tag Library.

<I ELEMENT taglib-1ocation (#PCDATA) >
PCDATA ::= a resource location, as indicated in Section 2.5. 2,
where to find the Tag Library Descriptor file.

Example

The use of relative URI specifications enables very short namesin thet agl i b directive.
For example:

<%@ taglib uri="/myPRlibrary” prefix="x" %>

and then

<taglib>
<taglib-uri>/myPRlibrary</taglib-uri>
<taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-uri>
</taglib>

Default location

If there is no taglib-uri subelement that matches the URI used in ataglib directive,
the tag library descriptor will be searched in the location indicated by the URI itself.

This rule only applies to URIs that are relative URI specifications (as in Section 2.5.2).

Example

Thisrule allows ataglib directive to refer directly to the TLD. This arrangement is very
convenient for quick development at the expense of less flexibility and accountability. For
example in the case above, it enables:

<%@ taglib uri="/tlds/PRlibrary_1_4.tld" prefix="x" %>

Chapter 5 Tag Extensions 94

5.3.2 Translation-Time Class L oader

The set of classes available at translation time is the same as available at runtime; the classes
in the underlying Java platform, those in the JSP container, and those in the class files in
VEEB- | NF/ cl asses, inthe JAR filesin WEB- | NF/ | i b, and, indirectly through the use of
the cl ass- pat h attribute in the META- | NF/ MANI FEST file of these JAR files.

5.3.3 Assembling a Web Application

As part of the process of assembling a Web Application together, the Application Assembler
will create a WEB- | NF/ directory, with appropriatel i b/ and cl asses/ subdirectories,
place JSP pages, Servlet classes, auxiliary classes, and tag libraries in the proper places and
then create a \EB- | NF/ web. xm that ties everything together.

Tag libraries that have been delivered in the standard format can be dropped directly into
VEEB- | NF/ | i b. The assembler may create t agl i b entriesin web. xml for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change information that
customizes a tag library; see Section 5.8.3.

534 Well-Known URIs

A JSP container may "know of" some specific URIs and may provide alternate
implementations for the tag libraries described by these URIs, but the user must see the same
behavior as that described by the, required, portable tag library description described by the
URI.

A JSP container must always use the mapping specified for a URI in the web.xml
deployment descriptor if present. If the deployer wants to use the platform-specific
implementation of the well-known URI, the mapping for that URI should be removed at
deployment time.

If there is no mapping for a given URI and the URI is not well-known to the JSP container,
atrandation-time error will occur.

There is no guarantee that this “well-known URI” mechanism will be preserved in later
releases of the JSP specification. As experience accumulates on how to use tag extensions,
the JSP specification may incorporate new functionality that will make the “well-known

URI" mechanism unnecessary; at that point it may be removed.

95 JavaServer Pages 1.1 Specification ¢ November 30, 1999

5.3.5

The Tag Library Descriptor Format

This section describes the DTD for the Tag Library Descriptor. This is the same DTD as
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd", except for some formatting
changes to extract comments and make them more readable.

Notation

<INOTATION WEB-JSPTAGLIB.1_1 PUBLIC “-//Sun Microsystems, Inc.//DTD
JSP Tag Library 1.1//[EN">

taglib

The taglib element is the document root. A taglib has two attributes.

<IATTLIST taglib
id
ID
#IMPLIED
xmins
CDATA
#FIXED

"http://java.sun.com j 2ee/ dt ds/web-j sptaglibrary_1 1.dtd"
>

A taglib element also has several subelements that define:
tlibversion the version of the tag library implementation
jspversion the version of JSP specification the tag library depends upon

shortname asimple default short name that could be used by a JSP page authoring tool

to

create names with a mnemonic value; for example, the it may be used as the

preferred prefix value in taglib directives.
uri auri uniquely identifying this taglib.
info a string describing the “use” of this taglib

<! ELEMENT taglib
(tlibversion, jspversion?,
shortnane, uri?, info?,
tag+) >

tlibversion

Describes this version (number) of the taglibrary.

Chapter 5 Tag Extensions

96

The syntax is:
<! ELEMENT tli bversi on (#PCDATA) >
#PCDATA ::= [0-9]* “.”[0-9] }0..3

jSpversion

Describes the JSP specification version (number) this taglibrary requiresin order to function.
The default is 1.1

The syntax is:
<! ELEMENT j spversion (#PCDATA) >
#PCDATA ::= [0-9]*{ “.”[0-9] }0..3.

shortname

Defines a simple default short name that could be used by a JSP page authoring tool to create
names with a mnemonic value; for example, the it may be used as the preferred prefix value in
taglib directives and/or to create prefixes for IDs . Do not use white space, and do not start
with digits or underscore.

The syntax is
<! ELEMENT short nane (#PCDATA) >
#PCDATA ::= NMTOKEN

uri

Defines a public URI that uniquely identifies this version of the tag library. It is
recommended that the URI identifying atag library is actualy a URL to the tag library
descriptor for this specific version of the tag library.

<! ELEMENT uri (#PCDATA) >

info

Defines an arbitrary text string describing the tag library.
<! ELEMENT i nfo (#PCDATA) >

tag

The tag defines an action in this tag library. It has one attribute:

97 JavaServer Pages 1.1 Specification ¢ November 30, 1999

<I ATTLIST tag id I D # MPLIED >
The tag may have several subelements defining:
name the unique action name
tagclass the tag handler class implementing j avax. servl et.j sp. t agext . Tag

teiclass an optional subclass of
javax. servlet.jsp.tagext. TagExtral nfo

bodycontent the body content type
info optional tag-specific information
attribute all attributes of this action

The element syntax is as follows:

<! ELEMENT t ag
(nane, tagclass, teiclass?,
bodycontent?, info?, attribute*) >

tagclass

Defines the tag handler class implementing the j avax. serl vet.j sp.tagext. Tag
interface. This element is required.

The syntax is:

<! ELEMENT t agcl ass (#PCDATA) >

#PCDATA ::= fully qualified Java class nane.
teiclass

Defines the subclass of j avax. servl et . j sp. t agext. TagExt r al nf o for this tag.
This element is optional.

The syntax is:
<! ELEMENT teicl ass (#PCDATA) >

#PCDATA ::= fully qualified Java cl ass nane
bodycontent

Provides a hint as to the content of the body of this action. Primarily intended for use by
page composition tools.

There are currently three values specified:

Chapter 5 Tag Extensions 98

99

tagdependent The body of the action is interpreted by the tag handler itself, and is most
likely in a different “language”, e.g. embedded SQL statements. The body of
the action may be empty.

JSP The body of the action contains elements using the JSP syntax. The body of the
action may be empty.

empty The body must be empty
The default value is “JSP”.

The syntax is:
<! ELEMENT bodycont ent (#PCDATA) >
#PCDATA ::= tagdependent | JSP | enpty.

attribute

Provides information on an attribute of this action. Attribute defines an id attribute for
external linkage.

<! ATTLI ST attribute id | D#l MPLI ED>
The subelements of attribute are of the form:
name the attributes name (required)
required if the attribute is required or optional (optional)

rtexprvalue if the attributes value may be dynamically calculated at runtime by a scriptlet
expression (optional)
The syntax is:

<! ELEMENT attribute
(nane, required?,
rtexprval ue?) >

name
Defines the canonical name of a tag or attribute being defined

The syntax is:
<! ELEMENT narne (#PCDATA) >
#PCDATA :: = NMIOKEN

JavaServer Pages 1.1 Specification ¢ November 30, 1999

required

Defines if the nesting attribute is required or optional.

The syntax is:
<! ELEMENT required (#PCDATA) >
#PCDATA ::=true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.

rtexprvalue

Defines if the nesting attribute can have scriptlet expressions as a value, i.e the value of the
attribute may be dynamically calculated at request time, as opposed to a static value
determined at translation time.

The syntax is:

<! ELEMENT rtexprval ue (#PCDATA) >

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value

5.4

5.4.1

Tag Handlers

A tag handler is a run-time server-side object that is created to help evaluate actions during
the execution of a JSP page. A tag handler supports a run-time protocol that facilitates
passing information from the JSP page to the handler.

A tag handler is a server-side invisible JavaBeans component, but it implements an
additional interface to indicate that it has a richer run-time protocol. There are two interfaces
that describe a tag handl@rag is used for simple tag handlers that are not interested in
manipulating their body content (if anyBpdyTag is an extension ofag and gives a tag
handler access to its body. ThagSupport andBodyTagSupport classes can be used

as base classes when creating new tag handlers.

Properties

A tag handler has songoperties that are set by the JSP container (usually through the JSP
page implementation class) using setter methods:

Chapter 5 Tag Extensions 100

5.4.2

* The pageContext object for the JSP page where the tag is |ocated; this object can be used
to access defined objects.

« The parent tag handler for the enclosing action.

A tag handler may have additional properties, as any other JavaBean component. These
properties will have setters and getter methods, as described in the JavaBeans component
specification, and used throughout the Java platform.

All attributes of a custom action must be JavaBeans component properties, although some
properties may not be exposed as attributes in the Tag Library Descriptor.

Additional translation time information (TagExt r al nf o) associated with the action
indicates the name of the variables it introduces, their types and their scope. At specific
moments (after processing the start tag; after processing the end tag), the JSP container can
automatically synchronize the PageContext information with variables in the scripting
language so they can be made available directly through the scripting elements.

Basic Protocol: Tag Interface

This section describes the Tag interface which defines the basic contract for al tag handlers.
See Section 5.4.7 for a summary of the life-cycle issues.

A tag handler has some properties that must be initialized before it can be used. It is the
responsibility of the JSP container to invoke the appropriate setter methods to initialize these
properties. Once properly set, these properties are expected to be persistent, so that if the
JSP container ascertains that a property has already been set on a given tag handler instance,
it needs not set it again. These properties include the properties in the Tag interface as well
as other properties

Once initialized, the doSt ar t Tag and doEndTag methods can be invoked on the tag
handler. Between these invocations, the tag handler is assumed to hold a state that must be
preserved. After the doEndTag invocation, the tag handler is available for further
invocations (and it is expected to have retained its properties). Once al invocations on the
tag handler are completed, ther el ease method isinvoked onit. Oncear el ease method
isinvoked all properties are assumed to have been reset to an unspecified value.

Properties

All tag handlers must have the following properties: pageContext, and parent. When setting
properties, the order is always pageContext and parent. The Tag interface specifies the setter
methods for all properties, and the getter method for parent.

setPageContext(PageContext) Sets the pageContext property of atag handler.

setParent(Tag) Sets the parent Tag for a tag handler.

101 JavaServer Pages 1.1 Specification « November 30, 1999

Tag getParent() Get the parent Tag for a tag handler. This method is used by the

Methods

fi ndAncest or Wt hCl ass static method in TagSupport .

There are two main action methods and one method for releasing all resources owned by a

tag handler.
doStartTag()

doEndTag()

release()

Process the start tag of this action. The doSt ar t Tag method assumes that
the properties pageContext and parent have been set. It also assumes that any
properties exposed as attributes have been set too. When this method is
invoked, the body has not yet been evaluated.

At the end of this method invocation some scripting variables may be assigned
from the pageCont ext object, as indicated by the optional
TagExt r al nf o class (at translation time).

This method returns an indication of whether the body of the action should be
evaluated (EVAL_BODY_INCLUDE or EVAL_BODY_TAG) or not
(SKIP_BODY). See below for more details.

EVAL_BODY_INCLUDE is not valid if the tag handler implements
BodyTag; EVAL_BODY_TAG is not valid if the tag handler implements
Tag and does not implement Body Tag.

This method may throw a JspException.

Process the end tag of this action. This method will be called after returning
from doSt art Tag. The body of the action may or not have been evaluated,
depending on the return value of doSt art Tag.

At the end of this method invocation some scripting variables may be assigned
from the pageCont ext object, as indicated by the optional
TagExt r al nf o class (at trandlation time).

If this method returns EVAL_PAGE, the rest of the page continues to be
evaluated. If this method returns SKIP_PAGE, the rest of the page is not
evaluated and the request is completed. If this request was forwarded or
included from another page (or Servlet), only the current page evaluation is
completed.

This method may throw a JspException.

Release a tag instance.

Chapter 5 Tag Extensions 102

5.4.3

Smple Actions with non-empty Bodies

If atag library descriptor maps an action with a non-empty body to a tag handler that
implements the Tag interface, the tag handler cannot manipulate this body because there is
no mechanism for the tag handler to access that body. To make the situation more explicit,
the return value of doSt art Tag is either SKIP_BODY, EVAL_BODY _INCLUDE or
EVAL_BODY_TAG. The meanings are as follows:

» SKIP_BODY means do not process the body of the action (if it exists).

« EVAL_BODY_INCLUDE means process the body of the action but do not create a new
BodyContent (see below) nor change the value of the out implicit object.

« EVAL_BODY_TAG means create a new BodyCont ent , change the value of the out
implicit object and process the body of the action.

A typical use for EVAL_BODY _INCLUDE could be a conditional inclusion action tag.
Since the body is to be passed through directly, there is no need for the tag handler to
manipulate it, and thus the tag handler needs not implement Body Tag.

To help in catching errors, EVAL_BODY _INCLUDE is not valid in a tag handler that
implements Body Tag, while EVAL_BODY_TAG is not valid in a tag handler that
implements Tag but does not implement BodyTag.

The TagSupport Base Class

The TagSupport classis a utility class intended to be used as the base class for new tag
handlers. The TagSupport class implements the Tag interface and adds additional
convenience methods including getter methods for the propertiesin Tag. TagSupport has
one static method that is included to facilitate coordination among cooperating tags.

Tag findAncestor WithClass(Tag,

5.4.4

class) Find the instance of a given class type that is closest to a given instance. This
method uses the get Par ent method from the Tag interface.

The return value of the doSt art Tag() method is SKI P_BODY. The return value of the
doEndTag() method is EVAL_PAGE.

Body Protocol: BodyTag Interface

The Body Tag interface extends Tag with methods to manipulate the body of an action.
These methods act on the bodyContent property of a Body Tag instance.

103 JavaServer Pages 1.1 Specification « November 30, 1999

It isthe responsibility of the tag handler to manipulate the body content. For example the tag
handler may take the body content, convert it into a St r i ng using the

bodyCont ent . get St ri ng method and then use it. Or the tag handler may take the body
content and write it out into its enclosing JspWriter using the bodyCont ent . wri t eQut
method.

A tag handler that implements Body Tag is treated as one that implements Tag, except that
the doSt ar t Tag method can either return SKIP_BODY or EVAL_BODY _TAG, not
EVAL_BODY_INCLUDE. If EVAL_BODY_TAG is returned, then a BodyContent object
will be created to capture the body evaluation. This object is obtained by calling the
pushBody method of the current pageCont ext , which additionally has the effect of
saving the previous out value. The object is returned through a call to the popBody
method of the PageCont ext class; the call also restores the value of out .

Properties
There is only one additional property: bodyContent

setBodyContent(BodyContent) Set the bodyContent property. It will be invoked at most once per action
invocation. It will be invoked before dol ni t Body and it will not be invoked if
there is no body evaluation.

When set BodyCont ent isinvoked, the value of the implicit object out has
already been changed in the pageCont ext object. The body passed will have
not data on it.

Methods

There are two action methods:

dolnitBody() Invoked before the first time the body is to be evaluated. Not invoked in empty tags or
in tags returning SKIP_BODY indoSt art Tag() .

Depending on TagExtralnfo values, the JSP container will resynchronize some variable
values after the dol ni t Body invocation.

This method may throw a JspException.

doAfterBody() Invoked after every body evaluation. Not invoked in empty tags or in tags returning
SKIP_BODY indoSt art Tag. If doAft er Body returns EVAL_BODY_TAG, a
new evaluation of the body will happen (followed by another invocation of

Chapter 5 Tag Extensions 104

doAf t er Body). If doAft er Body returns SKIP_BODY no more body
evaluations will occur, the value of out will be restored using the popBody method in
pageCont ext , and then doEndTag will be invoked.

The method re-invocations may be lead to different actions because there might have
been some changes to shared state, or because of external computation..

Depending on TagExtralnfo values, the JSP container will resynchronize some variable
values after every doAf t er Body invocation (so a reevaluation of the body will
return a different value).

This method may throw a JspException.

5.4.5 The BodyContent Class

The BodyCont ent isasubclass of JspW i t er that can be used to process body
evaluations so they can retrieved later on. The class has methods to convert its contents into
a String, to read its contents, and to clear the contents.

The buffer size of a BodyContent object is “unbounded”. A BodyContent object cannot be
in autoFlush mode. It is not possible to invdkeush on a BodyContent object, as there is
no backing stream. This means that it is not legal to docs@: i ncl ude when out is not
bound to the top-levelspW i t er.

Instances of this class are created by invokingptiehBody andpopBody methods of the
PageCont ext class. ABodyCont ent is enclosed within anothdspW i t er (maybe
anotherBodyCont ent object) following the structure of their associated actions.

The BodyContent type contains four main methods:

clearBody() Thisisaversion of the clear() method from JspWriter that is guaranteed not to
throw exceptions.

getReader () Get a reader into the contents of this instance.
getString() As getReader() but returns a String.
writeOut(Writer) Write out the content of this instance into the provided Writer.

getEnclosingWriter() Get the JspW i t er enclosing this Body Cont ent .

5.4.6 The BodyTagSupport Base Class

TheBodyTagSupport class is a utility class intended to be used as the base class for new
tag handlers implementinrBodyTag. TheBodyTagSupport class implements the

BodyTag interface and adds additional convenience methods including getter methods for
the bodyContent property and methods to get at the previousJegW i t er.

105 JavaServer Pages 1.1 Specification ¢ November 30, 1999

5.4.7

The return value of the doSt art Tag() method is EVAL_BODY_TAG The return value of
the doEndTag() method is EVAL_PAGE. The return value of the doAf t er Body()
method is SKI P_BODY.

Life-Cycle Considerations

At execution time the implementation of a JSP page will use an available Tag instance with
the appropriate prefix and name that is not being used, initialize it, and then follow the
protocol described below. Afterwards, it will release the instance and make it available for
further use. This approach reduces the number of instances that are needed at a time.

Initialization is done by setting the properties pageContext and parent, in that order, while
release is done by invoking release().

Chapter 5 Tag Extensions 106

An Execution Trace

The following figure shows the run-time trace for two actions supported by a tag handler
implementing Body Tag; settersareinitalics, while actionsare not. Theinner boxes highlight
the portion of the protocol used to interact with the body of the tag. In this example, we are
assuming that the second action has the same parent but one different attribute values.

. set PageCont ext (pageCont ext) ;
. set Parent (parent);
.SetAttributel(val uel);
.SsetAttribute2(val ue2);...
.doStart Tag()

=i e e e

out = pageContext. pushBody()
h. set BodyCont ent (out)

h. dol ni t Body()

[BODY] Body Actions
h. doAf t er Body()
[BADY]

h. doAf t er Body()

out = pageCont ext. popBody()

h. doEndTag() ;

h. setAttribute2(val ue3);
h. doSt art Tag()

out = pageContext. pushBody()
h. set BodyCont ent (out)

h. dol ni t Body()

[BADY]

h. doAf t er Body()

[BADY]

h. doAf t er Body()

out = pageCont ext. popBody()

h. doEndTag() ;

h. rel ease()

107 JavaServer Pages 1.1 Specification « November 30, 1999

9.5

Scripting Variables

The JSP specification supports scripting variables that can be declared within a scriptlet and
can be used in another. The actions in a JSP page also can be used to define scripting
variables so they can used in scripting elements, or in other actions; for example, the
jsp:useBean standard action may define an object which can later be used through a scripting
variable.

Since the logic that decides whether an action instance will define a scripting variable may
be quite complex, this information is not encoded in the Tag Library Descriptor directly;
rather, the name of a TagExt r al nf o classis given in the TLD and the

get Vari abl el nf o method is used at translation time to obtain information on each
variable that will be created at request time when this action is executed. The method is
passed a TagDat a instance that contains the translation-time attribute values.

The result of the invocation on get Var i abl el nf o isan array of Vari abl el nfo
objects. Each such object describes a scripting variable by providing its name, its type,
whether the variable is new or not, and what its scope is. Scope is best described through a
picture:.

NESTED
AT _BEGIN
<foo....>
body
AT END
</foo> F A

The defined values for scope are:

* NESTED, if the scripting variable is available between the start tag and the end tag of the
action that defines it.

« AT_BEGIN, if the scripting variable is available from the start tag of the action that
defines it until the end of the page.

« AT_END, if the scripting variable is available after the end tag of the action that defines
it until the end of the page.

The scope value for a variable implies what methods may affect its value and thus, in lack of
additional information, where synchronization is needed:

Chapter 5 Tag Extensions 108

« for NESTED, &fter dol ni t Body and doAf t er Body for a tag handler implementing
BodyTag, and after doSt ar t Tag otherwise.

« for AT_BEGIN, after dol ni t Body, doAfter Body, and doEndTag for atag
handler implementing Body Tag, and doSt art Tag and doEndTag otherwise.

» for AT_END, after doEndTag method.

5.6

5.6.1

5.6.2

Cooperating Actions

Often two actions in a JSP page want to cooperate, perhaps by one action creating some
server-side object that is used by the other. There are two basic mechanisms in the JSP
specification to achieve this.

|ds and PageContext.

One mechanism for supporting cooperation among actions is by giving the object a name
within the JSP page; the first action creates and names the object while the second action
uses the name to retrieve the object.

For example, in the following JSP page fragment the f 00 action creates a server-side object

and give it the name “myObject”. Then thar action accesses that server-side object and
takes some action.

<x:foo id="myObject” />

<x:bar ref="myObjet” />

In a JSP container implementation, the mapping between the name and the value is kept by
the implicit object pageContext. This object is passed around through the tag handler
instances so it can be used to communicate information: al it is needed is to know the name
under which the information is stored into the pageContext.

Run-Time Stack

An alternative to explicit communication of information through a named object is implicit
coordination based on syntactic scoping.

For example, in the following JSP page fragment the foo action might create a server-side
object; later the nested bar action might access that server-side object. The object is not
named within the pageContext: it is found because the specific foo element is the closest
enclosing instance of a known element type.

109 JavaServer Pages 1.1 Specification « November 30, 1999

<f oo>
<bar/ >
</ foo>

This functionality is supported through the f i ndAncest or Wt hCl ass(Tag, Cl ass)
static method of the Tag class which uses a reference to parent tag kept by each Tag instance,
which effectively provides a run-time execution stack.

5.7

5.7.1

5.7.2

5.7.3

Validation

Frequently there are constraints on how actions are to be used and when these constraints are
not kept an error should be reported to the user. There are several mechanismsin the JSP 1.1
specification to describe syntactic and semantic constraints among actions; future
specifications may add additional mechanisms.

Syntactic Information on the TLD

The Tag Library Descriptor contains some basic syntactic information. In particular, the
attributes are described including their name, whether they are optional or mandatory, and
whether they accept request-time expressions. Additionally the bodycont ent attribute can
be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author can assume that
the tag handler instance corresponds to an action that satisfies all constraints indicated in the
TLD.

Syntactic Information in a TagExtralnfo Class

Additional translation-time validation can be done using the i sVal i d method in the
TagExt r al nf o class. Thei sVal i d method isinvoked at translation-time and is passed a
TagDat a instance as its argument.

Raising an Error at Action Time

In some cases, additional request-time validation will be done dynamically within the
methods in the tag handler. If an error is discovered, an instance of JspEr r or can be
thrown. If uncaught, this object will invoke the errorpage mechanism of the JSP
specification.

Chapter 5 Tag Extensions 110

5.8 Conventions and Other | ssues

This section is not normative, although it reflects good design practices.

5.8.1 How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:
« Define atag library.
« Add an action called defineObjects; this action will define the desired objects.

Then the JSP page can make these objects available as follows:

<U@tablig prefix="me" uri="...... "%
<ne: def i neCbj ects />
start using the objects....

This approach has the advantage of requiring no new machinery and of making very explicit
the dependency.

In some cases there may be some implementation dependency in making these objects
available; for example, they may be providing access to some functionality that only existsin
some implementation. This can be done by having the tag extension class test at run-time for
the existence of some implementation dependent feature and raise a run-time error (this, of
course, makes the page not J2EE compliant, but that is a different discussion).

This mechanism, together with the access to metadata information allows for vendors to
innovate within the standard.

Note: if afeature is added to a JSP specification, and a vendor also provides that feature
through its vendor-specific mechanism, the standard mechanism, as indicated in the JSP
specification will “win”. This means that vendor-specific mechanisms can slowly migrate
into the specification as they prove their usefulness.

5.8.2 Access to Vendor-Specific information

If a vendor wants to associate with some tag library some information that is not described in
the current version of the TLD, it can do so by inserting the information in a document it
controls, inserting the document in the WEB-INF portion of the JAR file where the Tab
Library resides, and using the standard Servlet 2.2 mechanisms to access that information.

The vendor can now use the ID machinery to refer to the element within the TLD.

111 JavaServer Pages 1.1 Specification « November 30, 1999

5.8.3 Customizing a Tag Library

A tag library can be customized at assembly and deployment time. For example, a tag
library that provides access to databases may be customized with login and password
information.

There is no convenient place in web. xnl in the Servlet 2.2 spec for customization
information A standardized mechanism is probably going to be part of a forthcoming JSP
specification, but in the meantime the suggestion is that a tag library author place this
information in a well-known location at some resource in the VEB- | NF/ portion of the
Web Application and access it viathe get Resour ce() call on the Ser vl et Cont ext .

Chapter 5 Tag Extensions 112

113 JavaServer Pages 1.1 Specification « November 30, 1999

CHAPTER

6

JSP Technology Classes

This chapter describes the packages that are part of the JSP 1.1 specification. The packages
may be used in a number of situations, including within scripting elements, by base classes,
and in implementations of Tag Extensions.

There are two packages

e javax.servlet.jsp

e javax.servlet.jsp.tagext.

The javadoc documents that accompany this specification® provide detailed description of the
packages. This appendix provides an overview, context, and usage guidelines.

6.1

6.1.1

Package javax.servlet.jsp

The javax.servlet.jsp package contains a number of classes and interfaces that describe and
define the contracts between a JSP page implementation class and the runtime environment
provided for an instance of such a class by a conforming JSP container.

JspPage and HttpJspPage

Two interfaces describe the interaction between a class implementing a JSP page and the JSP
container: HttpJspPage and JspPage. Chapter 3 describes the role of these two interfaces in
detail. The JspPage contract is not further described here, see the javadoc documentation
for details.

The large mgjority of the JSP pages use the HTTP protocol and thus are based on the
Ht t pJspPage contract. This interface has three methods, two of which can be redefined by
the JSP author using a declaration scripting element:

1. All JSP-related specifications are avail able from http://java.sun.com/products/jsp.

JSP Technology Classes 114

6.1.2

jsplnit() Thej spl ni t () method isinvoked when the JSP page is initialized. It is the
responsibility of the JSP implementation (and of the class mentioned by the ext ends
attribute, if present) that at this point invocations to the get Ser vl et Confi g()
method will return the desired value.

A JSP page can override this method by including a definition for it in a declaration
element.

The signature of this method is void jsplnit().

jspDestroy() Thej spDestroy() method is invoked when the JSP page is about to be destroyed.

A JSP page can override this method by including a definition for it in a declaration
element.

The signature of this method is void jspDestroy().

_jspService() The_j spSer vi ce() method corresponds to the body of the JSP page. This method is

defined automatically by the JSP container and should never be defined by the JSP
page author.

If asuperclassis specified using the ext ends attribute, that superclass may choose to
perform some actions in its service() method before or after calling the _jspService()
method. See Section 3.2.4.

The signature of this method is public void _jspService(HttpServietRequest request,
HttpServletResponse response) throws ServietException, |OException.

JspWriter

The actions and template data in a JSP page is written using the JspW i t er object that is
referenced by the implicit variable out . This variable isinitialized by code generated
automatically by the JSP container (see the PageCont ext object in Section 6.1.4).

Theinitial JspW it er object is associated with the Pri nt Wit er object of the

Ser vl et Response in away that depends on whether the page is or not buffered. If the
page is not buffered, output written to this JspW i t er object will be written through to
the Pri nt Wi t er directly, which will be created if necessary by invoking the

get Wit er () method on ther esponse object. But if the page is buffered, the
PrintWiter objectwill not be created until when the buffer is flushed, and operations
like set Cont ent Type() arelegal. Since this flexibility simplifies programming
substantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two approaches can be
taken:

» Exceeding the buffer is not a fatal error; when the buffer is exceeded, just flush the
output.

» Exceeding the buffer is afatal error; when the buffer is exceeded, raise an exception.

115 JavaServer Pages 1.1 Specification « November 30, 1999

Both approaches are valid, and thus both are supported in the JSP technology. The behavior
of a page is controlled by the aut oFI ush attribute, which defaults to true. In general, JSP
pages that need to be sure that correct and complete data has been sent to their client may
want to set aut oFl ush to f al se, with atypical case being that where the client is an
application itself. On the other hand, JSP pages that send data that is meaningful even when
partially constructed may want to set aut oFl ush tot r ue; a case may be when the data is
sent for immediate display through a browser. Each application will need to consider their
specific needs.

An alternative considered was to make the buffer size unbounded, but this has the
disadvantage that runaway computations may consume an unbounded amount of resources.

The JspW i t er interface includes behaviors from j ava. i o. Buf f eredW it er and
java.io.PrintWiter API's but incorporates buffering and does not consume
IOExceptions as PrintWriter does. If a particular use requires a PrintWriter, as in the case of
desiring to insert an exception stack trace, one can be obtained by wrapping the JspWriter
with a PrintWriter.

The usual methods found in PrintWriter are available with the only modification being that
the JspWriter methods do not consume IOExceptions. The additional methods are:

clear() Thismethod is used to clear the buffer of data. It isillegal to invoke it if the JspWriter
is not buffered. And exception will be raised if the buffer has been autoFlushed and
clear() is invoked. Also see clearBuffer().

The method signature is void clear()

clearBuffer() Thismethod islike clear() except that no exception will be raised if the buffer has been
autoFlushed().

The method signature is void clearBuffer().

flush() This method is used to flush the buffer of data. The method may be invoked indirectly
if the buffer size is exceeded. The underlying PrintWriter object is guaranteed to be
created exactly the first time data is flushed to it.

The method signature is void flush()

close() This method can be used to close the stream. It needs not be invoked explicitly for the
initial JspWriter as the code generated by the JSP container will automatically include
acall to close().

The method signatures is void close().

getBufferSize() This method returns the size of the buffer used by the JspWriter.
The method signatures is int getBuffer Sze()

getRemaining() This method returns the number of unused bytes in the buffer.

The method signature is int getRemaining()

Appendix 6 JSP Technology Classes 116

isAutoFlush() This method indicates whether the JspWriter is autoFlushing.

The method signature is boolean isAutoFlush()

6.1.3 JspException and JspError

JspException is a generic exception class. It currently has one subclass: JspError. A
JspError has a message and it reflects an unexpected error that has been found during the
execution of a JSP page. If uncaught, the error will result in an invocation of the errorpage
machinery.

6.1.4 PageContext

A PageCont ext provides an object that encapsulates implementation-dependent features
and provides convenience methods. A JSP page implementation class that uses a
PageCont ext as shown in FIGURE F-1 will run unmodified in any compliant JSP contai ner
taking advantage of implementation-specific improvements like high performance

JspWi ters. JSP 1.1 compliant containers must generate JSP page implementation classes
that use this PageCont ext object to provide insulation from platform implementation
details.

A PageCont ext object isinitialized by a JSP container implementation early on in the
processing of the _j spSer vi ce() method. The PageCont ext implementation itself is
implementation dependent, and is obtained via a creation method on the JspFact ory.
The PageCont ext provides a number of facilities, including:

« asingle API that manages the operations available over various scope namespaces
(page, request, session, application)suchassetAttribute(),
getAttribute() andrenoveAttribute(), etc.

* amechanism for obtaining a platform dependent implementation of the JspW i t er that
is assigned to theolt ” implicit scripting variable.

« a number of simple conveniengetter API's for obtaining references to various request-
time objects.

* mechanisms téorward or include the current request being processed to other
components in the application

6.1.4.1 Creation

The PageContext class is an abstract class, designed to be extended by conforming JSP
container runtime environments to provide implementation dependent implementations.

117 JavaServer Pages 1.1 Specification « November 30, 1999

An instance of a PageContext is created by a JSP container-specific implementation class at
the beginning of it's j spSer vi ce() method via an implementation-specific default
JspFact ory, as shown irFIGURE F-1:

FI GURE F-1 Using PageContext to Provide Implementation-Independence

public void _jspService(HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

JSPFactory factory =
JSPFact ory. get Def aul t Factory();

/1l CGet the page context object for this page
PageCont ext pageContext = factory. get PageCont ext (
this,
request,
response,

null, // e.g. no errorPageURL,
false, // e.g. no session
JspWi t er. DEFAULT_BUFFER,
true // autoflush=true
)

/1 Initialize inplicit variables for scripting

Ht t pSessi on sessi on = pageCont ext . get Sessi on();

JspWiter out = pageCont ext.get Qut();
oj ect page =this;
try {

/1 body of JSP here ...
} catch (Exception e) {
out.clear();
pageCont ext . handl ePageExcepti on(e);

} finally {
out. close();

factory.rel easePageCont ext (pageCont ext);

}

6.1.4.2 Usage

The PageContext object provides access to multiple functionality

Appendix 6 JSP Technology Classes 118

119

Uniform Access to Multiple Scopes

These methods provide uniform access to the diverse scopes objects. The implementation
must use the underlying Servlet machinery corresponding to that scope, so information can
be passed back and forth between Servlets and JSP pages.

getAttribute()

getAttribute()

findAttribute()

getAttributeNamesl nScope()
getAttributesScope()

removeAttribute()

removeAttribute()

setAttribute()

setAttribute()

Access an attribute in the page scope, or null if not found.

Overload of previous method to access an attribute in a given scope or null if
not found.

Searches for the named attribute in page, request, session (if valid) and
application scopes in order and returns the value associated or null.

Enumerate all the attributes in a given scope
Get the scope where a given attribute is defined

Remove the object reference associated with the given name, look in all scopes
in the scope order.

Overload of previous method to remove the object reference associated with
the given name in the given scope.

Register the given name and object in the page scope.

Overload of previous method to register the given name and object in the given
scope.

Access to Implicit Objects

These methods provide convenience access to implicit objects and other objects that can be
obtained by different ways.

getOut()
getException()
getPage()
getRequest()
getResponse()
getSession()
getServletConfig()

getServietContext()

The current value of the out object (a JspWriter).

The current value of the except i on object (an Exception).
The current value of the page object (a Servlet).

The current value of ther equest object (a ServletRequest).
The current value of the r esponse object (a ServletResponse).
The current value of the sessi on object (an HttpSession).
The ServletConfig instance.

The ServletContext instance.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

Management of Nested Scopes

These methods enable the management of nested JspWriter streams to implement Tag
Extensions. Note that pushBody() returnsaBodyCont ent , while popBody() returnsa
JspW i t er, which will need to be casted into a BodyContent in al but the top level.

pushBody() Return a new BodyCont ent object, save the current "out" JspW i t er,
and update the value of the "out" attribute in the page scope attribute
namespace of the PageCont ext

popBody() Return the previous JspW i t er "out" saved by the matching
pushBody() , and update the value of the "out" attribute in the page scope
attribute namespace of the PageCont ext .

Management of PageContext Object

The following two methods provide management of the PageContext object itself. These
methods are not intended to be used by the JSP page author.

initialize() Initialize a PageContext with the given data.

release() Release a PageContext object.

Forward and Includes

These methods encapsulate forwarding and inclusion.

forward() Thismethod isused to forward the current ServletRequest and ServletResponse
to another component in the application.

The signature of this method is void forward(Sring relativeUrlPath) throws
ServletException, | OException.

include() This method causes the resource specified to be processed as part of the current
ServletRequest and ServletResponse being processed by the calling Thread.

The signature of this method is void include(Srring relativeUrl|Path) throws
ServletException, | OException.

handlePageException() Process an unhandled page level exception by performing a redirect.

The signature of this method is void handlePageException(Exception €) throws
ServletException, | OException.

Appendix 6 JSP Technology Classes 120

6.1.5 JspEnginelnfo

The JspEngi nel nf o class provides information on the JSP container implementation. The
only method currently available is:

getSpecificationVersion() Returns a String in Dewey decimal describing the highest version of the JSP
specification implemented by the JSP container. See the
j ava. | ang. Package classin the Java 2 platform for other methods that
may appear in this class in future specifications.

6.1.6 JspFactory

The JspFact ory provides a mechanism to instantiate platform dependent objectsin a
platform independent manner. The PageCont ext class and the JspEnginelnfo class are the
only implementation dependent classes that can be created from the factory.

Typically at initialization time, a JSP container will cal the static

set Def aul t Fact ory() method in order to register it's own factory implementation. JSP
page implementation classes will use ¢fet Def aul t Fact ory() method in order to
obtain this factory and use it to constrifeigeCont ext instances in order to process client
requests.

JspFactory objects are not intended to be used by JSP page authors.

6.2 Package javax.servlet.jsp.tagext

The classes in the javax.servlet.jsp.tagext package are related to the Tag Extension
mechanism. They are described in detail in Chapter 5. In this section we will just briefly
review and group them.

A brief description of the classes follows. Classes whose name ends in Info are translation-
time classes. Instances that are initialized from the Tag Library Descriptor are in bold italics:

BodyContent Encapsulates the evaluation of a tag body.
Tag The interface of atag handler for an action that does not want to manipulate its body.
BodyTag The interface of atag handler for an action that wants to manipulate its body.
TagSupport A base class for defining new tag handlers implementing Tag.
BodyTagSupport A base class for defining new tag handlers implementing BodyTag.

TagAttributelnfo: Information on the attributes of a tag.

121 JavaServer Pages 1.1 Specification ¢ November 30, 1999

TagData:
TagExtral nfo
Taglnfo:
TagLibrarylnfo:

Variablel nfo

The attribute/value information for a tag instance. Used at translation-time only.

Tag Author-provided class to describe additional translation-time information.

Information needed by the JSP container at page compilation time.

Information on atag library.

Information on scripting variables.

Appendix 6

JSP Technology Classes

122

123 JavaServer Pages 1.1 Specification « November 30, 1999

CHAPTER 7

JSP Pages as XML Documents

This chapter defines a standard XML document for each JSP page.

The JSP page to XML document mapping is not visible to JSP 1.1 containers; it will receive
substantial emphasis in the next releases of the JSP specification. Since the mapping has not
received great usage, we particularly encourage feedback in this area.

7.1

Why an XML Representation

There are a number of reasons why it would be impractical to define JSP pages as XML
documents when the JSP page is to be authored manually:

e An XML document must have a single top element; a JSP page is conveniently organized
as a sequence of template text and elements.

< In an XML document all tags are “significant”; to “pass through” a tag, it needs to be
escaped using a mechanism like CDATA. In a JSP page, tags that are undefined by the
JSP specification are passed through automatically.

* Some very common programming tokens, like “<* are significant to XML; the JSP
specification provides a mechanism (the <% syntax) to “pass through” these tokens.

On the other hand, the JSP specification is not gratuitously inconsistent with XML: all
features have been made XML-compliant as much as possible.

The hand-authoring friendliness of JSP pages is very important for the initial adoption of the
JSP technology; this is also likely to remain important in later time-frames, but tool
manipulation of JSP pages will take a stronger role then. In that context, there is an ever
growing collection of tools and APIs that support manipulation of XML documents.

The JSP 1.1 specification addresses both requirements by providing a friendly syntax and
also defining a standard XML document for a JSP page. A JSP 1.1-compliant tool needs not
do anything special with this document.

JSP Pages as XML Documents 124

7.2

7.2.1

1.2.2

Document Type

The jsp:root Element

An XML document representing a JSP page has j sp: r oot asitsroot element type. The
root is also the place where taglibs will insert their namespace attributes. The top element has
an xn ns attribute that enables the use of the standard elements defined in the JSP 1.1
specification.
<j sp: root

xmins:jsp="http://java.sun.com/products/jsp/dtd/jsp_1_0.dtd">

renmai nder of transformed JSP page

</jsp:root>

Public ID

The proposed Document Type Declaration is:

<! DOCTYPE root
PUBLIC"-//Sun Microsystems Inc.//DTD JavaServer Pages Version 1.1/EN”
“http://java.sun.com/products/jsp/dtd/jspcore_1_0.dtd">

7.3

7.3.1

Directives

A directive in a JSP page is of the form
<%@ directive { attr="value” }* %

Most directives get translated into an element of the form:
<j sp: directive. directive { attr="value” }* />

The page directive

In the XML document corresponding to JSP pages, the page directive is represented using
the syntax:

125 JavaServer Pages 1.1 Specification « November 30, 1999

<jsp:directive. page page directive_attr_list [>

See Section 2.7.1 for description of page _di rective_attr_Iist.

Example

The directive:
<%@ page info="my latest JSP Example V1.1" %>

corresponds to the XML element:
<jsp:directive.page info="my latest JSP Example V1.1" />

7.3.2 Thei ncl ude Directive

In the XML document corresponding to JSP pages, the include directive is represented using
the syntax:

<jsp:directive.include file=" relativeURLspec” flush="true|fal se" />

Examples

Below are two examples, one in JSP syntax, the other using XML syntax:
<%@ include file="copyright.nmt!” %>
<jsp:directive.include file="htmldocs/logo.html” />

7.3.3 Thet agl i b Directive

In the XML document corresponding to JSP pages, the taglib directive is represented as an
xmins: attribute within the root element of the JSP page document.

7.4 Scripting Elements

The JSP 1.1 specification has three scripting language elements—declarations, scriptlets, and
expressions. The scripting elements have a “<%"-based syntax as follows:

<% this is a declaration %
<%this is a scriptlet %
<% this is an expression %

Chapter 7 JSP Pages as XML Documents 126

7.4.1 Declarations

In the XML document corresponding to JSP pages, declarations are represented using the
syntax:

<j sp: decl arati on> decl arati on goes here </jsp:decl arati on>
For example, the second example from Section 2.10.1:
<%! public String f(int i) {if (i<3) return(“...”); ... } %>

is translated using a CDATA statement to avoid having to quote the “<" inside the
jsp:declaration.

<j sp:declaration> <![CDATA] public String f(int i) { if (i<3)
return(“...”); }]]> </jsp:declaration>

DTD Fragment
<IELEMENT jsp:declaration (#PCDATA) >

7.4.2 Scriptlets

In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

DTD Fragment
<IELEMENT jsp:scriptlet (#PCDATA) >

7.4.3 Expressions

In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:expression> expression goes here </jsp:expression>

DTD Fragment
<IELEMENT jsp:expression (#PCDATA) >

127 JavaServer Pages 1.1 Specification « November 30, 1999

7.5

Actions

The syntax for action elementsis based on XML; the only transformations needed are due to
guoting conventions and the syntax of reguest-time attribute expressions.

7.6

Transforming a JSP Page into an XML
Document

The standard XML document for a JSP page is defined by transformation of the JSP page.

« Addac<j sp: root > element as the root. Enable a “jsp” hamespace prefix for the standard
tags within this root.

* Convert all the <% elements into valid XML elements as described in Section 7.4.1 and
following sections.

e Convert the quotation mechanisms appropriately.
« Convert thet agl i b directive into namespace attributes of #jesp: r oot > element.

« Create CDATA elements for all segments of the JSP page that do not correspond to JSP
elements.

A quick summary of the transformation is showrTABLE 7-1:

TABLE 7-1 XML standard tags for directives and scripting elements

JSP page element XML equivalent

<%@ page ... %> <jsp:directive.page ... />

<%@ taglib ... %> jsp:root element is annotated with namespace information.
<%@ include ... %> <jsp:directive.include .../>

<%! ... %> <jsp:declaration> ... </jsp:declaration>

<% ... %> <jsp:scriptlet> </jsp:scriptlet>

<%= %> <jsp:expression> </jsp:expression>

Chapter 7 JSP Pages as XML Documents 128

7.6.1

7.6.2

Quoting Conventions

The quoting rules for the JSP 1.1 specification are designed to be friendly for hand authoring,
they are not valid XML conventions.

Quoting conventions are converted in the generation of the XML document from the JSP
page. Thisis not yet described in this version of the specification.

Request-Time Attribute Expressions

Request-time attribute expressions are of the form “<%= expression %>". Although this
syntax is consistent with the syntax used elsewhere in a JSP page, it is not a legal XML
syntax. The XML mapping for these expressions is into values of the form “%= expression’
%", where the JSP specification quoting convention has been converted to the XML quoting
convention.

7.7

DTD for the XML document

The following is a DTD for the current XML mapping:

FIGURE 7-1 DTD for the XML document

<IENTITY % jsp.body “
(#PCDATA
lisp:directive.page
lisp:directive.include
lisp:scriptlet
[isp:declaration
lisp:expression
[isp:include
lisp:forward
lisp:useBean
lisp:setProperty
lisp:getProperty
[isp:plugin
[isp:fallback
lisp:params
lisp:param)*

“>

129 JavaServer Pages 1.1 Specification ¢ November 30, 1999

<! ELEMENT j sp: useBean % sp. body; >

<I ATTLI ST j sp: useBean

id ID #REQUI RED

cl ass CDATA#REQUI RED

scope (page|session|request|application) “page”>

<IELEMENT jsp:setProperty EMPTY>
<IATTLIST jsp:setProperty

name IDREF#REQUIRED
propertyCDATA#REQUIRED

value CDATA#IMPLIED

param CDATA#IMPLIED>

<IELEMENT jsp:getProperty EMPTY>
<IATTLIST jsp:getProperty

name IREF#REQUIRED
propertyCDATA#REQUIRED>

<I[ELEMENTjsp:includeEMPTY>
<IATTLISTjsp:include

flush (true|false)"false”

page CDATA#REQUIRED>

<IELEMENT jsp:forward EMPTY>
<IATTLISTjsp:forward
page CDATA#REQUIRED>

<IELEMENT jsp:scriptlet (#PCDATA)>
<IELEMENT jsp:declaration (#PCDATA)>
<IELEMENT jsp:expression (#PCDATA)>

<IELEMENT jsp:directive.page EMPTY>
<IATTLIST jsp:directive.page
languageCDATA"java”
extendsCDATA#IMPLIED
contentTypeCDATA"text/html; ISO-8859-1"
import CDATA#IMPLIED
session(true|false)“true”

buffer CDATA"8kb”
autoFlush(true|false)“true”
isThreadSafe(true|false)“true”

info CDATA#IMPLIED
errorPageCDATA#IMPLIED
isErrorPage(true|false)“false”>

<IELEMENT jsp:directive.include EMPTY>
<IATTLIST jsp:directive.include
file CDATA #REQUIRED>

Chapter 7

JSP Pages as XML Documents

130

<! ELEMENT j sp:root % sp. body; >

<I ATTLI ST j sp: root

xm ns: j spCDATA#FIXED “http://java.sun.com/products/jsp/dtd/
jsp_1_0.dtd">

131 JavaServer Pages 1.1 Specification ¢ November 30, 1999

APPENDIX A

Examples

This appendix describes some examples of custom actions defined using the Tag Extension
mechanism. Refer to the JSP technology web site (http://java.sun.com/products/jsp) to
retrieve a copy of the examples.

Each example is described briefly and the methods that are defined are explained and
justified.

A.l Simple Examples

Most tags are likely to be simple encapsulations of some functionality. The first set of
examples are of this type and were aready introduced in Section 5.1.3; here they are
described in some more detail.

A.ll Call Functionality, no Body

The example of Section 5.1.3.1 is the simplest example:
<x:foo att1="..." att2="..." att3="..." />

In this case:

Tag Library Descriptor Indicates there are 3 mandatory attributes that are only translation-time, and
that FooTag is the handler for tag "foo".

FooTag FooTag needs only provide a method for doStartTag(). The method
doSt art Tag performs the desired actions, possibly interact with the
PageContext data.

The attribute values are exposed as attributes and their values are set
automatically by the JSP container.

132

A.l.2

A.1.3

A.l4

Call Functionality, No Body, Define Object

The example of Section 5.1.3.2 is a simple variation of the previous example:
<x:bar id="nybar" attl="..." att2="..." att3="..." />

In this case..

Tag Library Descriptor Indicates there are 3 mandatory attributes that are only translation-time, and

that BarTag is the handler for tag "bar". For the example, assume that id is
optional, in which case the TLD also indicates that as being the case.

The TLD also needs to indicate that BarExtralnfo is the name of the class that
will provide information on the scripting variables introduced; see below.

BarTag Bar Tag needsonly provide amethod for doSt art Tag() . The method will
interact with the PageCont ext data to register the created object with a
name that is the value of the id attribute.

The attribute values are exposed as attributes and their values are set
automatically by the JSP container.

BarExtralnfo This class, to be instantiated at translation time, needs only define a
get Vari abl el nf o() method. This method will look at the TagDat a
object it is passed and will return either null or an array of Var i abl el nfo
objects of size 1, with the value corresponding to the scripting variable with
name given by theiit.

Template Mechanisms

Section 5.1.3.4 refers to a family of template mechanisms that have been used in the past.
All of these mechanisms take some information and replace a token in the template page by
either some fixed expansion or the result of some computation.

These mechanisms can be implemented through an empty-bodied action that is mapped to
Tag handler that uses the desired information to locate the wanted resource and pushes the
information into the JspWriter.

A 0.92-like useBean

The useBean of 0.92 will be described here. Note that the implementation will not be as
efficient as ideal due to the need to do some computation at request evaluation time. Some
discussion of the issues will be included.

133 JavaServer Pages 1.1 Specification ¢ November 30, 1999

A.2

A.21

A Set of SQL Tags

The following is a possible set of SQL tags. Note that this specific syntax is only used for
pedagogical reasons, no endorsement is implied.

Connection, Userld, and Password

The connection tag creates a connection using some userid and password information. To
show tag communication, userid and password are actually subelements of connection.

<x:connection id="con0l"
ref ="connecti on. xm ">
<x:useri d><%sessi on. get Useri d() %</ x: useri d>
<x: passwor d><%sessi on. get Passwor d() %»<x: passwor d>
</ x: connecti on>

In this example the “con01” object is available after the element.

This example uses the run-time stack so userid and password can locate their enclosing
connection tag and can update userid and password data in there. This example also uses
PageContext to register the SQL connection object with the pagecontext using "con01" so it can

be retrieed later.

Tag Library Descriptor Indicates the names of the tags and their attributes. It associates Tag handlers

with the tags. It also associates the ConnectionExtralnfo as the TagExtral nfo
for connection.

UserldTag UserldTag needs access to its body; this it can do by defining a doAfterBody()
method. This method will take the BodyContent and convert it into a String.
Then it will use the findAncestorWithClass() static method on Tag to locate the
enclosing connection tag instance and will set the desired userid information on
that object.

PasswordTag This Tag handler is equivalent to UserldTag.

ConnectionTag This Tag handler provides methods to setUserld() and to setPassword() that
will be used by the enclosed actions; it also provides a getConnection() method
that on-demand computes the desired SQL connection. This tag handler needs
not be concerned with the body computation, but it will need to register the
SQL connection object with the pageContext object if an ID is provided.

ConnectionExtralnfo This classisidentical to BarExtralnfo from a previous example.

Appendix 134

A.2.2

A.2.3

Query

The connection can now be used to make a query. The query element takes the body of the
tag and make a query on it. The result gets inserted in place

<x:query id="bal ances" connection="con01">

SELECT account, bal ance FROM acct _table

wher e custonmer _nunber = <% request. get Cust no() %
</ x: query>

The implementation highlights are;

Tag Library Descriptor Query has two mandatory attributes (in our example), and they are described as

sointhe TLD. The TLD also associates QueryTag as the Tag handler class,
and QueryExtralnfo as the TagExtralnfo for the query tag.

QueryTag QueryTag needs access to its body; this it can do by defining a doAfterBody()
method. This method will take the BodyContent and convert it into a String.
Then it will use the PageContext object to locate an SQL connection that was
registered using the id that is the value to the connection attribute. The result
of the query will be registered in the PageContext with the value of the id
attribute as its name.

QueryExtralnfo Thisclassis identical to BarExtralnfo from a previous example.

Iteration

Finally the query result can later be used to present the data by dynamically creating a series
of elements.

<x:foreach iterate="row' in="bal ances">

<l i >The bal ance for

account <% row. getAccount ()% is <% row. getBal ance() %
</ x: foreach>

</ ul >

Unlike query and connection, the foreach element does not define a new object for later use
but it defines (and redefines) a "row" object that is accessible within its start and end tags.

The implementation of this tag requires the repeated evaluation of the body of the tag.

Tag Library Descriptor Foreach has two mandatory attributes (in our example), and they are described

assointhe TLD. The TLD also associates ForEachTag as the Tag handler
class, and ForEachExtralnfo as the TagExtralnfo for the foreach tag.

135 JavaServer Pages 1.1 Specification « November 30, 1999

ForEachTag.doStartTag()

For EachTag.doAfter Body()

ForEachTag.doEndTag()

For EachExtral nfo()

ForEachTag needs to define a doStartTag() method to extract the value of thein
and iterate attributes from the attribute values. The value of in ("balances’ in
this example) is used to get at the result data. The value of iterate ("row" in
this example) is used as the key on which to store the iteration value.

The current value of the "out" variable is stored away so it can be used in
doBody(). This method returns EVAL_BODY so as to force the evaluation of
the body.

The BodyContent (obtained from getBodyContent()) contains the evaluation of
the body of the element where the evaluation has been done in a context where
the variable "row" is assigned the different rows of the query. This method
now inserts this content into the surrounding out stream (obtained from
getPreviousOut()).

This method now updates the binding of "row" and will return EVAL_BODY
or SKIP_BODY depending on whether there were any more rows in the result
set.

Just clean up.

The trandlation-time information indicates that this action defines a new
scripting variable, with scope NESTED and name corresponding to the value of
the "row" attribute.

Appendix 136

137 JavaServer Pages 1.1 Specification ¢ November 30, 1999

APPENDIX B

| mplementation Notes

This appendix provides implementation notes on the JSP technology. The notes are not
normative and should only reinforce information described elsewhere. In particular, smarter
but valid implementations are always welcome!

B.1

Delivering Localized Content

The definition in Section 2.7.4 enables but does not mandate the following implementation

strategy:

« Tranglate the JSP page into a Servlet class source using the character encoding of the JSP
page

« Compile the Servlet source using the -encoding switch. This produces a Servlet class file
that has a number of (probably static) Unicode strings.

* Run the Servlet with the JspWriter configured to generate output in the encoding of the
JSP page.

B.2

Processing TagLib directives

A strict 1-pass implementation would make custom actions visible only after their
corresponding taglib directive appears. But this semantics can lead to the situation where a
JSP page author is staring at a JSP page fragment with the assumption that a taglib directive
appears before, when it really is included after. The semantics of Section 2.7.7 are designed
to support an efficient implementation while minimizing JSP page author mistakes.

138

An implementation can still work in a 1-pass manner; it only needs to remember all the
prefixes it has found and make the assumption that taglib directives appear before their use.
But, if it later discovers that ataglib directive is defining a prefix that was used previously
then it can cause a translation error.

B.3 Processing Tag Libraries

We describe some details of how to compile Tag Libraries and show an sketch of some code
implementing a JSP page.

B.3.1 Processing a Tag Library Descriptor

Thetag library descriptor is read and information is extracted from it. Some of the actions to
be performed include:

* Record the mapping from tag to tag handler class

» Record the tag as a known to the JSP container so ataglib directive will introduce new
actions.

* Record information on what tags must have an empty body, to be checked on individual
pages later on.

» Record what are the valid attributes, and which ones can have request-time values.
» Record the TagExtralnfo classes, if any, associated with given tags,.

» Can be used to perform reflection on the tag handler classes to determine if the class
implements Tag or BodyTag

» Can be used to perform introspection on the tag handler classes to determine their
properties and their setter methods.

B.3.2 Processing a JSP page

When the JSP container processes a JSP page, it will perform analysis, validation, and
generation of code. Actions include:

» Validate that actions who must have an empty body do.
« Validate that the only attributes that appear are those indicated in the TLD.
» Validate that the only attributes with request-time values are those indicated in the TLD.

139 JavaServer Pages 1.1 Specification « November 30, 1999

» |If thereisa TagExt r al nf o class associated in the TLD, a TagDat a object will be
created with the appropriate attribute/value entries, and will be passed to thei sVal i d
method to determine if the attributes are valid.

« If thereisaTagExt r al nf o class associated in the TLD, a TagDat a object will be
created with the appropriate attribute/value entries, and will be passed to the
get Vari abl el nf o method to determine if any scripting variables will be updated by
this action at request time.

B.3.3 Generating the JSP Page Implementation Class

The JSP page implementation class generated by the JSP container includes code that:
» Generate the appropriate setter method invocations to set values for attributes
* Reuse tag handlers that are not being used to reduce the number of tag handler creations.

« Assume that atag handler object retainsits set properties to reduce the number of method
invocations.

« Attempt to do some reorganization of setter method invocation so statically determined
properties are not reset on a tag handler unnecessarily.

B.3.4 An Example

We now describe a simple example.

B.3.4.1 JSP Page Example

We will use a JSP page fragment as follows, where "chunk" is some uninterpreted template
text

Appendix 140

B.3.4.2

FI GURE 2-1 A JSP page fragment

chunkl
<x:foo id="myFoo" ...>
chunk2
<x:bar id="myBar" ...>
chunk3
</x:bar>
chunk4
</x:foo>
chunkb

<x:baz ref="myFoo" .../>

For the example, we will assume the TLD and TagExtralnfo provides the information in
TABLE 2-1.

TABLE 2-1 Taglnfo for the example

Tag Handler VariableInfo (name, type, scope)
foo FooTag myFoo, FooResult, AT_END
bar BarTag myBar, BarResult, AT_END

baz BazTag none

Implementation Code Fragment

The following code fragment can be used to implement the page fragment of FIGURE 2-1.

static {JspFactory _fact = JspFactory. get Defaul t Factory();
}
_jspService(HttpServet Request req, HtpServl et Response res) {

PageCont ext pc = _fact.getPageContext(...); // once
hj ect tenpOoject = null;
int tenpReturn;

Il just as an example, let’s initialize all the Tag handlers
FooTag footag = new FooTag();

BarTag bartag = new BarTag()

BazTag baztag = new BazTag();

JspWriter out = pageContext.getOut(); // the initial out

141 JavaServer Pages 1.1 Specification ¢ November 30, 1999

/[l -- ditto for all other inplicit objects

EVAL chunki;

Evaluate <x:foo>...</x:foo>

EVAL chunkb5;

bazt ag. set PageCont ext (pc) ;
bazt ag. set Parent (nul |);
baztag.setRef(“myFo0”);
try {
(void)baztag.doStartTag();
tempReturn = baztag.doEndTag();
} finally {
baztag.release();
}
if (tempReturn == SKIP_PAGE) {
goto endOfPage; // pseudo-code
}.

endOfPage:

Where the evaluation of <f 0o0>. .. </ foo> is:

footag.setPageContext(pc);
footag.setParent(null);
footag.setld(“myFo0”);

if (footag.doStartTag() == EVAL_BODY_TAG) {

try {
out = pc.pushBody();

foobag.setBodyContent(out);
footag.dolnitBody();
repeat2:

EVAL chunk2;

Evaluate <x:bar>...</x:bar>

EVAL chunk4;
if (footag.doAfterBody() == EVAL_BODY_TAG) {
goto repeat2; // pseudo-code

}
} finally {

Appendix

142

out = pc. popBody();

}
}
tempResult = footag. doEndTag();
tenmpCbj ect = pc.getAttribute("nyFoo");
} finally {

f oot ag. rel ease();
}
FooResult nyFoo = (FooResult) tenpOhject;
if (tempResult == SKIP_PAGE) {
goto endOf Page; // pseudo-code
}

and the evaluation of <bar >. . . </ bar > is essentially the same:

bart ag. set PageCont ext (pc) ;
bart ag. set Par ent (f oot ag) ;
bartag.setld(“myBar”);

try {
if (bartag.doStartTag() == EVAL_BODY_TAG) {
try {
out = pc.pushBody();
bartag.setBodyContent(out);
bartag.dolnitBody();
repeat3:
EVAL chunk3;
if (bartag.doAfterBody() == EVAL_BODY_TAG) {
goto repeat3; // pseudo-code
}
} finally {
out = pc.popBody();
}
}

tempResult = bartag.doEndTag();
tempObject = pc.getAttribute("myBar");
} finally {
bartag.release();
}

BarResult myBar = (BarResult) tempObiject;

if (tempResult == SKIP_PAGE) {
goto endOfPage; // pseudo-code
}

143 JavaServer Pages 1.1 Specification ¢ November 30, 1999

B.4

| mplementing Buffering

Although the Servlet 2.2 specification provides for buffering, its semantics are

aut of | ush=t r ue. Buffering could be done without using the Servlet buffered stream, but
this implementation does not allow for forwarding into a page that is not a JSP page. Thisis
problematic for the implementation of j sp: i ncl ude actions (see Section 2.13.4) since the
goal isforj sp: i ncl ude to be totally transparent to how the data is computed
dynamically. Due to this, the only semantics we can use at this point still remains "flush on
include" as it was in the JSP 1.0 specification.

Appendix 144

145 JavaServer Pages 1.1 Specification ¢ November 30, 1999

APPENDIX C

Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a WAR for delivery
into a Web container. In the first example, the JSP page is delivered in source form. Thisis
likely to be the most common example. In the second example the JSP page is compiled into
a Servlet that uses only Servlet 2.2 and JSP 1.1 API calls; the Servlet is then packaged into a
WAR with a deployment descriptor such that it looks as the original JSP page to any client.

This appendix is non normative. Actualy, strictly speaking, the appendix relates more to the
Servlet 2.2 capabilities to the JSP 1.1 capabilities. The appendix is included here as thisis a
feature that JSP page authors and JSP page authoring tools are interested in.

Cl

A very simple JSP page

We start with a very smple JSP page Hel | oWor | d. j sp.
<%@ page i nfo="Exanple JSP pre-conpil ed" %
<p>

Hello Wrld

</ p>

C.2

The JSP page packaged as sourcein aWAR
file
The JSP page can be packaged into a WAR file by just placing it at location "/

Hel | oWbr | d. j sp" the default JSP page extension mapping will pick it up. The
web. xm istrivial:

146

C.3

<! DOCTYPE webapp

SYSTEM "http://java. sun. conl j 2ee/ dt ds/ web-app_1_2.dtd">

<webapp>

<sessi on-confi g>
<session-tinmeout> 1 </session-tinmeout>
</ sessi on-confi g>

</ webapp>

The Servlet for the compiled JSP page

As an dternative, we will show how one can compile the JSP page into a Servlet class to run
in a JSP container.

The JSP page is compiled into a Servlet with some implementation dependent name
_j sp_Hel I oWor | d_XXX_I npl . The Servlet code only depends on the JSP 1.1 and
Servlet 2.2 APIs, as follows:

i mports javax.servlet.*;

i mports javax.servlet.http.*;
i mports javax.servlet.jsp.*;

class _jsp_Hell oWorl d_XXX_I npl
ext ends_Pl at f or rDependent _Jsp_Super _I npl {

public void _jsplnit() {
1.,
}

public void jspDestroy() {
...

}
static JspFactory _factory = JspFactory. get Def aul t Factory();

public void _jspService(Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException, Servl et Exception
hj ect page this;
Ht t pSessi on session request . get Sessi on();
ServletConfig config get Servl et Config();
Servl et Cont ext application = config. getServl et Context();

PageCont ext pageCont ext
= _factory. get PageContext(this,

147 JavaServer Pages 1.1 Specification ¢ November 30, 1999

request

response,
(String) NULL,
true,
JspWi ter. DEFAULT_BUFFER
true
)

JspWiter out = pageCont ext.getQut();

/| page context creates initial JspWiter "out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageCont ext . handl ePageExcepti on(e);

} finally {
_factory. rel easePageCont ext (pageCont ext) ;
}

C4

The Web Application Descriptor

The Servlet is made to look as a JSP page with the following web. xm :

<! DOCTYPE webapp
SYSTEM "http://java. sun. cont j 2ee/ dt ds/ web-app_1_2.dtd">
<webapp>
<servl et>
<servl et-nane> Hel |l oWorl d </servl et -nanme>
<servl et-class> Hell oWrld.class </servlet-class>
</servl et>

<servl et - mappi ng>
<servl et-name> Hel |l oWrl d </servl et-nanme>
<url-pattern> /HelloWrld.jsp </url-pattern>
</ servl et - mappi ng>

<session-confi g>
<session-tineout> 1 </session-tineout>
</ sessi on-confi g>
</ webapp>

Appendix

148

C5 The WAR for the compiled JSP page

Finally everything is packaged together into a WAR:
/ VEEB- | NF/ web. xm
/ V\EB- | NF/ cl asses/ Hel | oWor 1 d. cl ass

Note that if the Servlet class generated for the JSP page had dependent on some support
classes, they would have to be included in the WAR.

149 JavaServer Pages 1.1 Specification ¢ November 30, 1999

APPENDIX D

Future

This appendix provides some information on future directions of the JSP technology.

D.1

Meta-Tag Information

A tag extension mechanism can include information:
» To execute a JSP page that uses the tag library.

* To edit a JSP page.

» To present the JSP page to the end user.

The JSP 1.1 specification concentrates on the first type of information providing some small
amount of the other type of information; future specifications may address the other pieces.

D.2

Standard Tags

The tag extension mechanism enables the creation of tag libraries; some application domains
have widespread applicability and there is substantial interest in defining standard tags for
these domains.

D.3

Additional Application Support

We are investigating the benefits and costs of adding additional support for applications into
the JSP specification.

150

D.4 JSP, XML and XSL Technologies

The JSP 1.0 and JSP 1.1 specification started in the direction of XML representations of JSP
pages. At the time of the design of the JSP 1.0 and JSP 1.1 specifications the Java platform
was lacking on APIs for the manipulation of XML documents; this deficiency is being
corrected and we expect to exploit the interaction of XML and JSP technologies more fully
in future specifications.

151 JavaServer Pages 1.1 Specification ¢ November 30, 1999

APPENDIX E

Changes

This appendix lists the changes in the JavaServer Pages specification.

E.l

E.11

Changes between 1.1 PR2 and 1.1 final

Changes

Updated the license.

Consistent use of the JSP page, JSP container, and similar terms. Some other minor
editorial changes.

Clarified the return values of the methods in the TagSupport and Body TagSuppor t
classes.

Normalized the throws clause in the methods in Tag, BodyTag, TagSupport and
BodyTagSupport. These methods now throw JspExcepti on.

Added amissingt hrows | OException tothewriteQut () methodin
BodyCont ent .

Renamed JspError to JspTagExcepti on.

The get Tagl d() and set Tagl d() methods in TagSupport were renamed to
getld() andset|d() to be consistent with the switch to properties.

Spelled out some consequences of (the unchanged) specification that f | ush() on
BodyCont ent raises an exception.

Clarified the interpretation of the uri attributein thet agl i b directive.

152

E.2 Changes between 1.1 PR1 and PR2

E2.1 Additions

e Added a Glossary as Appendix F.

* Normalized use of Container and Component terminology; including changing the name
of Chapter 3.

» Described the relationship of this specification to the Servlets and J2EE specifications.

» Expanded on some of the organizational models in Chapter 1 so as to cover 0.92’s "model
1" and "model 2".

« Expanded Section 2.7.2 to summarize the implications of threading and distribution from
the Servlet spec and to define the notion of a distributable JSP page.

* Added a description of how to package a JSP page within a WAR; changed the title of
Appendix C to reflect the new material.

E.2.2 Changes

153

< A tag handler is now a JavaBean component; attributes are properties that have been
explicitly marked as attributes in the TLD.

* The type subelement of attribute in the TLD is now defined by the type of the
corresponding JavaBean component property, and has been removed from the TLD.

 Clarified implicit import list in Section 2.7.1. Clarified details on Section 2.12.1,
Section 2.13.6 and Section 3.4.2.

* The names of the DTDs have changed to reflect that the JSP and Servlet specifications
have a separate release vehicle to J2EE. The new names are web-jsptaglibrary_1_1.dtd
and web-app_2_2.dtd.

« Decomposed the Tag abstract class into two interfaces and two support classes.

* Adjusted the semantics of the uri attribute in taglib, and the mechanism by which a tag
library descriptor is located.

* Normalized the terminology on the Tag Extension mechanism.

* Indicated that a "compiled" JSP page should be packaged with any support classes it may
use.

 BodyJspWi t er is nowBodyCont ent to clarify its meaning; this is similar to the PD
name. The namBodyJspW it er was confusing some readers.

« Corrected implementation examples to show how a JSP page implementation class
invokesget Def aul t Fact ory only statically.

JavaServer Pages 1.1 Specification ¢ November 30, 1999

E.3

E.3.1

E.3.2

Reorganized the material in Section B.3 for accuracy and presentation.

Changes between 1.1 PD1 and PR1

Additions

Added a Tag Library Descriptor (TLD) file

Added parametersto j sp: i ncl ude andj sp: forward..
Added JspExcepti on and JspErr or classes.

Added a parent field to the Tag class to provide a runtime stack.
Added pushBody() and popBody() to PageContext.

Added appendix with an example of compiling a simple JSP page into a Servlet that is
delivered within a WAR

Upgraded the javadoc documentation

Upgraded al the examples.

Added a precompilation protocol.

Reserved all request parameters starting with "jsp”.

Changes

Most Info classes are not to be subclassed; instead their information is now derived
completely from the TLD file; TagExtralnfo is the exception.

BodyEvaluation is now called BodyJspWriter and it is a subclass of JspWriter.

Tag is now an abstract class; TagSupport has been removed. NodeData is now called
TagData.

Split doBody() into doBef or eBody() and doAft er Body() to simplify
programming.

The semantics of the nested JspWriter have changed: now there is only at most one
BodyJspWriter per invocation of the action, regardless of how many times the body is
evaluated.

Return type of doSt art Tag() isnow an int for better documentation and ease of
extensibility.

Addedinitialize() andrel ease() methods to Tag class; clarified life-cycle
requirements.

Appendix 154

» Substantial cleanup of presentation; revisions to many classes.

E.3.3 Deletions

» Removed the ChildrenMap mechanism.

* Removed the flush="false" optioninj sp: i ncl ude asit cannot be implemented on
Servlet 2.2.

» Removed the proposal for a standard Servlet tag for now. Will probably be availablein a
"utils' tag library.

E.4 Changes between 1.0and 1.1 PD1

The JSP 1.1 specification builds on the JSP 1.0 specification.

E.4.1 Additions

» Enabled the compilation of JSP pages into Servlet classes that can be transported from
one JSP container to another.

* Added a portable tag extension mechanism.
* Flush is now an optional attribute of jsp:include, and afalse value is valid and the default.

E.4.2 Changes

e Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B); Servlet 2.2 is still
being finalized, but the specification is intended to be upward compatible.

e jsp:pluginnolonger can be implemented by just sending the contents of
j sp: fal | back to the client.

E.4.3 Removals

* None so far.

155 JavaServer Pages 1.1 Specification « November 30, 1999

APPENDIX F

Glossary

This appendix is a glossary of the main concepts mentioned in this specification.

action

action, standard

action, custom

Application Assembler

component contract

Component Provider

distributed container

declaration

directive

element

expression

An element in a JSP page that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for elements
with a start tag, a body and an end tag; if the body is empty it can also use the empty
tag syntax. The tag must use a prefix.

An action that is defined in the JSP specification and is always available to a JSP file
without being imported.

An action described in a portable manner by atag library descriptor and a collection of
Java classes and imported into a JSP page by ataglib directive.

A person that combines JSP pages, servlet classes, HTML content, tag libraries, and
other Web content into a deployable Web application.

The contract between a component and its container, including life cycle management
of the component and the APIs and protocols that the container must support.

A vendor that provides a component either as Java classes or as JSP page source.

A JSP container that can run a Web application that is tagged as distributable and is
spread across multiple Java virtual machines that might be running on different hosts.

An scripting element that declares methods, variables, or both in a JSP page.
Syntactically it is delimited by the <%! and %> characters.

An element in a JSP page that gives an instruction to the JSP container and is
interpreted at translation time. Syntactically it is delimited by the <%@ and %>
characters.

A portion of a JSP page that is recognized by the JSP translator. An element can be a
directive, an action, or a scripting element.

A scripting element that contains a valid scripting language expression that is
evaluated, converted to a St r i ng, and placed into the implicit out object.
Syntactically it is delimited by the <%= and %> characters

156

fixed template data

implicit object

JavaServer Pages
technology

JSP container

JSP file

JSP page

JSP page, front

JSP page, presentation

JSP page implementation
class

JSP page implementation
object

scripting element

scriptlet

157

Any portions of a JSP file that are not described in the JSP specification, such as
HTML tags, XML tags, and text. The template data is returned to the client in the
response or is processed by a component.

A server-side object that is defined by the JSP container and is always available in a
JSP file without being declared. The implicit objects are r equest , r esponse,
pageCont ext, sessi on, appl i cati on, out, confi g, page, and excepti on.

An extensible Web technology that uses template data, custom elements, scripting
languages, and server-side Java objects to return dynamic content to aclient. Typically
the template datais HTML or XML elements, and in many cases the client is a Web
browser.

A system-level entity that provides life cycle management and runtime support for JSP
and Servlet components.

A text file that contains a JSP page. In the current version of the specification, the JSP
file must have a .jsp extension.

A text-based document that uses fixed template data and JSP elements and describes
how to process arequest to create a response. The semantics of a JSP page are realized
at runtime by a JSP page implementation class.

A JSP page that receives an HTTP request directly from the client. It creates, updates,
and/or accesses some server-side data and then forwards the request to a presentation
JSP page.

A JSP page that is intended for presentation purposes only. It accesses and/or updates
some server-side data and incorporates fixed template data to create content that is sent
to the client.

The Java programming language class, a Servlet, that is the runtime representation of a
JSP page and which receives the request object and updates the response object. The
page implementation class can use the services provided by the JSP container,
including both the Servlet and the JSP APIs.

The instance of the JSP page implementation class that receives the request object and
updates the response object.

A declaration, scriptlet, or expression, whose tag syntax is defined by the JSP
specification, and whose content is written according to the scripting language used in
the JSP page. The JSP specification describes the syntax and semantics for the case
where the language page attribute is "java’.

An scripting element containing any code fragment that is valid in the scripting
language used in the JSP page. The JSP specification describes what is a valid
scriptlet for the case where the language page attribute is "java'. Syntactically a
scriptlet is delimited by the <% and %> characters.

JavaServer Pages 1.1 Specification November 30, 1999

tag
tag handler
tag library

tag library descriptor

Tag Library Provider

Web application

Web application,
distributable

Web Application
Deployer

Web component

Web Container
Provider

A piece of text between a left angle bracket and aright angle bracket that has a name,
can have attributes, and is part of an element in a JSP page. Tag hames are known to

the JSP trandlator, either because the name is part of the JSP specification (in the case
of astandard action), or because it has been introduced using a Tag Library (in the case
of custom action).

A JavaBean component that implements the Tag or Body Tag interfaces and is the
run-time representation of a custom action.

A collection of custom actions described by a tag library descriptor and Java classes.
An XML document describing atag library.

A vendor that provides atag library. Typical examples may be a JSP container vendor,
a development group within a corporation, a component vendor, or a service vendor
that wants to provide easier use of their services.

An application built for the Internet, an intranet, or an extranet.

A Web application that is written so that it can be deployed in a Web container
distributed across multiple Java virtual machines running on the same host or different
hosts. The deployment descriptor for such an application uses the di st ri but abl e
element.

A person who deploys a Web application in a Web container, specifying at least the
root prefix for the Web application, and in a J2EE environment, the security and
resource mappings.

A servlet class or JSP page that runs in a JSP container and provides services in
response to requests.

A vendor that provides a servlet and JSP container that support the corresponding
component contracts.

Chapter 158

	Contents
	Chapter 1: Overview 18
	Chapter 2: Standard Syntax and Semantics 34
	Chapter 3: The JSP Container 72
	Chapter 4: Scripting 82
	Chapter 5: Tag Extensions 86
	Chapter 6: JSP Technology Classes 114
	Chapter 7: JSP Pages as XML Documents 124
	Appendix A: Examples 132
	Appendix B: Implementation Notes 138
	Appendix C: Packaging JSP Pages 146
	Appendix D: Future 150
	Appendix E: Changes 152
	Appendix F: Glossary 156

	Preface
	Who should read this document
	Related Documents

	Overview
	1.1 The JavaServer Pages™ Technology
	1.2 What is a JSP Page?
	An Example Using Scripting and Beans
	An Example Using a Tag Library
	Components and Containers

	1.3 Features in JSP 1.1
	1.4 Overview of JSP Page Semantics
	1.4.1 Translating and Executing JSP Pages
	1.4.2 Compiling JSP Pages
	1.4.3 Objects and Scopes
	1.4.4 Fixed Template Data
	1.4.5 Directives and Actions
	Tag Extension Mechanism

	1.4.6 Scripting Languages
	1.4.7 Objects and Variables
	1.4.8 Scripts, Actions, and Beans
	1.4.9 JSP, HTML, and XML

	1.5 Web Applications
	1.6 Application Model
	1.6.1 Simple 21/2-Tier Application
	1.6.2 N-tier Application
	1.6.3 Loosely Coupled Applications
	1.6.4 Using XML with JSP Technology
	1.6.5 Redirecting Requests
	Presentation JSP pages and Front JSP pages

	1.6.6 Including Requests

	Standard Syntax and Semantics
	2.1 General Syntax Rules
	2.1.1 Elements and Template Data
	2.1.2 Element Syntax
	2.1.3 Start and End Tags
	2.1.4 Empty Elements
	2.1.5 Attribute Values
	2.1.6 White Space

	2.2 Error Handling
	2.2.1 Translation Time Processing Errors
	2.2.2 Client Request Time Processing Errors

	2.3 Comments
	Generating Comments in Output to Client
	JSP Comments

	2.4 Quoting and Escape Conventions
	Quoting in Scripting Elements
	Quoting in Template Text
	Quoting in Attributes
	XML Representation

	2.5 Overview of Semantics
	2.5.1 Web Applications
	2.5.2 Relative URL Specifications within an Application
	2.5.3 Web Containers and Web Components
	2.5.4 JSP Pages

	2.6 Template Text Semantics
	2.7 Directives
	2.7.1 The page Directive
	Examples
	2.7.1.1 Syntax

	2.7.2 Synchronization Issues
	2.7.3 Specifying Content Types
	2.7.4 Delivering Localized Content
	2.7.5 Including Data in JSP Pages
	2.7.6 The include Directive
	Examples
	2.7.6.1 Syntax

	2.7.7 The taglib Directive
	Examples
	2.7.7.1 Syntax

	2.8 Implicit Objects
	2.9 The pageContext Object
	2.10 Scripting Elements
	2.10.1 Declarations
	Examples
	Syntax

	2.10.2 Scriptlets
	Examples
	Syntax

	2.10.3 Expressions
	Examples
	Syntax

	2.11 Actions
	2.12 Tag Attribute Interpretation Semantics
	2.12.1 Request Time Attribute Values
	2.12.2 The id Attribute
	2.12.3 The scope Attribute

	2.13 Standard Actions
	2.13.1 <jsp:useBean>
	Examples
	2.13.1.1 Syntax

	2.13.2 <jsp:setProperty>
	Examples
	2.13.2.1 Syntax

	2.13.3 <jsp:getProperty>
	Examples
	2.13.3.1 Syntax

	2.13.4 <jsp:include>
	Examples
	2.13.4.1 Syntax

	2.13.5 <jsp:forward>
	Examples
	2.13.5.1 Syntax

	2.13.6 <jsp:param>
	2.13.6.1 Syntax

	2.13.7 <jsp:plugin>
	Examples
	2.13.7.1 Syntax

	The JSP Container
	3.1 The JSP Page Model
	The Protocol Seen by the Web Server
	The Protocol Seen by the JSP Page Author
	The HttpJspPage Interface

	3.2 JSP Page Implementation Class
	3.2.1 API Contracts
	3.2.2 Request and Response Parameters
	3.2.3 Omitting the extends Attribute
	3.2.4 Using the extends Attribute

	3.3 Buffering
	3.4 Precompilation
	3.4.1 Request Parameter Names
	3.4.2 Precompilation Protocol

	Scripting
	4.1 Overall Structure
	Valid JSP Page
	Implementation Flexibility

	4.2 Declarations Section
	4.3 Initialization Section
	4.4 Main Section

	Tag Extensions
	5.1 Introduction
	5.1.1 Goals
	5.1.2 Overview
	Simple Actions
	Actions with Body
	Cooperating Actions
	Actions Defining Scripting Variables

	5.1.3 Examples
	5.1.3.1 Call Functionality, no Body
	5.1.3.2 Call Functionality, No Body, Define Object
	5.1.3.3 Call Functionality, Define Object by Scope
	5.1.3.4 Template Mechanisms
	5.1.3.5 An HTML quoting action
	5.1.3.6 A useBean as in the JSP 0.92 specification

	5.2 Tag Library
	5.2.1 Packaged Tag Libraries
	5.2.2 Location of Java Classes
	5.2.3 Tag Library directive

	5.3 Tag Library Descriptor
	5.3.1 Locating a Tag Library Descriptor
	5.3.1.1 Taglib map in web.xml
	taglib
	taglib-uri
	taglib-location
	Example

	5.3.1.2 Default location
	Example

	5.3.2 Translation-Time Class Loader
	5.3.3 Assembling a Web Application
	5.3.4 Well-Known URIs
	5.3.5 The Tag Library Descriptor Format
	Notation
	taglib
	tlibversion
	jspversion
	shortname
	uri
	info
	tag
	tagclass
	teiclass
	bodycontent
	attribute
	name
	required
	rtexprvalue

	5.4 Tag Handlers
	5.4.1 Properties
	5.4.2 Basic Protocol: Tag Interface
	Properties
	Methods
	Simple Actions with non-empty Bodies

	5.4.3 The TagSupport Base Class
	5.4.4 Body Protocol: BodyTag Interface
	Properties
	Methods

	5.4.5 The BodyContent Class
	5.4.6 The BodyTagSupport Base Class
	5.4.7 Life-Cycle Considerations
	An Execution Trace

	5.5 Scripting Variables
	5.6 Cooperating Actions
	5.6.1 Ids and PageContext.
	5.6.2 Run-Time Stack

	5.7 Validation
	5.7.1 Syntactic Information on the TLD
	5.7.2 Syntactic Information in a TagExtraInfo Class
	5.7.3 Raising an Error at Action Time

	5.8 Conventions and Other Issues
	5.8.1 How to Define New Implicit Objects
	5.8.2 Access to Vendor-Specific information
	5.8.3 Customizing a Tag Library

	JSP Technology Classes
	6.1 Package javax.servlet.jsp
	6.1.1 JspPage and HttpJspPage
	6.1.2 JspWriter
	6.1.3 JspException and JspError
	6.1.4 PageContext
	6.1.4.1 Creation
	6.1.4.2 Usage
	Uniform Access to Multiple Scopes
	Access to Implicit Objects
	Management of Nested Scopes
	Management of PageContext Object
	Forward and Includes

	6.1.5 JspEngineInfo
	6.1.6 JspFactory

	6.2 Package javax.servlet.jsp.tagext

	JSP Pages as XML Documents
	7.1 Why an XML Representation
	7.2 Document Type
	7.2.1 The jsp:root Element
	7.2.2 Public ID

	7.3 Directives
	7.3.1 The page directive
	Example

	7.3.2 The include Directive
	Examples

	7.3.3 The taglib Directive

	7.4 Scripting Elements
	7.4.1 Declarations
	DTD Fragment

	7.4.2 Scriptlets
	DTD Fragment

	7.4.3 Expressions
	DTD Fragment

	7.5 Actions
	7.6 Transforming a JSP Page into an XML Document
	7.6.1 Quoting Conventions
	7.6.2 Request-Time Attribute Expressions

	7.7 DTD for the XML document

	Examples
	A.1 Simple Examples
	A.1.1 Call Functionality, no Body
	A.1.2 Call Functionality, No Body, Define Object
	A.1.3 Template Mechanisms
	A.1.4 A 0.92-like useBean

	A.2 A Set of SQL Tags
	A.2.1 Connection, UserId, and Password
	A.2.2 Query
	A.2.3 Iteration

	Implementation Notes
	B.1 Delivering Localized Content
	B.2 Processing TagLib directives
	B.3 Processing Tag Libraries
	B.3.1 Processing a Tag Library Descriptor
	B.3.2 Processing a JSP page
	B.3.3 Generating the JSP Page Implementation Class
	B.3.4 An Example
	B.3.4.1 JSP Page Example
	B.3.4.2 Implementation Code Fragment

	B.4 Implementing Buffering

	Packaging JSP Pages
	C.1 A very simple JSP page
	C.2 The JSP page packaged as source in a WAR file
	C.3 The Servlet for the compiled JSP page
	C.4 The Web Application Descriptor
	C.5 The WAR for the compiled JSP page

	Future
	D.1 Meta-Tag Information
	D.2 Standard Tags
	D.3 Additional Application Support
	D.4 JSP, XML and XSL Technologies

	Changes
	E.1 Changes between 1.1 PR2 and 1.1 final
	E.1.1 Changes

	E.2 Changes between 1.1 PR1 and PR2
	E.2.1 Additions
	E.2.2 Changes

	E.3 Changes between 1.1 PD1 and PR1
	E.3.1 Additions
	E.3.2 Changes
	E.3.3 Deletions

	E.4 Changes between 1.0 and 1.1 PD1
	E.4.1 Additions
	E.4.2 Changes
	E.4.3 Removals

	Glossary

