
901 San Antonio Road
Palo Alto, California 94303
415 960-1300 fax 415 969-9131

A Division of Sun Microsystems, Inc.

JavaServer Pages™
Specification

Version 1.1

please send comments to jsp-spec-comments@eng.sun.com

November 30, 1999

Java Software

Eduardo Pelegrí-Llopart, Larry Cable

nd
l and
g this
ns set

t the
tion, to
his
thout

onal
g or

ut
.*" or
ments
rior to
urce

mation
minate
 its
 this

rs is
vaBeans,
ava
the

ation
JavaServer Pages™ Specification ("Specification")
Version: 1.1
Status: Final Release
Release: 12/17/99

Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved.

NOTICE.
This Specification is protected by copyright and the information described herein may be protected by one or
more U.S. patents, foreign patents, or pending applications. Except as provided under the following license,
no part of this Specification may be reproduced in any form by any means without the prior written
authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of this Specification a
the information described herein will be governed by these terms and conditions and the Export Contro
General Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copyin
Specification, you agree that you have read, understood, and will comply with all the terms and conditio
forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (withou
right to sublicense), under Sun's intellectual property rights that are essential to practice this Specifica
internally practice this Specification solely for the purpose of creating a clean room implementation of t
Specification that: (i) includes a complete implementation of the current version of this Specification, wi
subsetting or supersetting; (ii) implements all of the interfaces and functionality of this Specification, as
defined by Sun, without subsetting or supersetting; (iii) includes a complete implementation of any opti
components (as defined by Sun in this Specification) which you choose to implement, without subsettin
supersetting; (iv) implements all of the interfaces and functionality of such optional components, witho
subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the "java
"javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing require
available from Sun relating to the most recently published version of this Specification six (6) months p
any release of the clean room implementation or upgrade thereto; (vii) does not derive from any Sun so
code or binary code materials; and (viii) does not include any Sun source code or binary code materials
without an appropriate and separate license from Sun. This Specification contains the proprietary infor
of Sun and may only be used in accordance with the license terms set forth herein. This license will ter
immediately without notice from Sun if you fail to comply with any provision of this license. Sun may, at
sole option, terminate this license without cause upon ten (10) days notice to you. Upon termination of
license, you must cease use of or destroy this Specification.

TRADEMARKS.
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licenso
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, Jini, JavaServer Pages, Enterprise Ja
Java Compatible, JDK, JDBC, JAVASCRIPT, JavaBeans, JavaMail, Write Once, Run Anywhere, and J
Naming and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc. in
U.S. and other countries.

DISCLAIMER OF WARRANTIES.
THIS SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.
This document does not represent any commitment to release or implement any portion of this Specific
in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean
room implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND.
Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in this license
and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)(Oct
1988), FAR 12.212(a) (1995), FAR 52.227-19 (June 1987), or FAR 52.227-14(ALT III) (June 1987), as
applicable.

REPORT.
You may wish to report any ambiguities, inconsistencies, or inaccuracies you may find in connection with
your use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis and (ii) grant
Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for
any purpose related to the Specification and future versions, implementations, and test suites thereof.

Contents

Preface.. xiv

Who should read this document ... xiv

Related Documents .. xv

Chapter 1: Overview ... 18

The JavaServer Pages™ Technology .. 18

What is a JSP Page? .. 19

Features in JSP 1.1 .. 22

Overview of JSP Page Semantics .. 22

Translating and Executing JSP Pages................................. 22

Compiling JSP Pages ... 23

Objects and Scopes .. 24

Fixed Template Data .. 25

Directives and Actions ... 25

Scripting Languages... 26

Objects and Variables... 26

Scripts, Actions, and Beans.. 27

JSP, HTML, and XML ... 27

Web Applications .. 28
Contents iv

Application Model ...28

Simple 21/2-Tier Application ... 29

N-tier Application... 29

Loosely Coupled Applications.. 30

Using XML with JSP Technology 31

Redirecting Requests .. 32

Including Requests ... 33

Chapter 2: Standard Syntax and Semantics.....................................34

General Syntax Rules...34

Elements and Template Data .. 34

Element Syntax... 34

Start and End Tags .. 35

Empty Elements.. 35

Attribute Values .. 35

White Space.. 36

Error Handling ...37

Translation Time Processing Errors 37

Client Request Time Processing Errors 37

Comments ..38

Quoting and Escape Conventions ..39

Overview of Semantics ..39

Web Applications ... 40

Relative URL Specifications within an Application 40

Web Containers and Web Components 41

JSP Pages.. 41

Template Text Semantics...42

Directives...42
v JavaServer Pages 1.1 Specification • November 30, 1999

The page Directive ... 43

Synchronization Issues... 47

Specifying Content Types .. 49

Delivering Localized Content .. 49

Including Data in JSP Pages... 50

The include Directive... 50

The taglib Directive ... 51

Implicit Objects ... 52

The pageContext Object .. 54

Scripting Elements .. 54

Declarations ... 55

Scriptlets .. 55

Expressions .. 56

Actions .. 57

Tag Attribute Interpretation Semantics 57

Request Time Attribute Values... 57

The id Attribute.. 58

The scope Attribute .. 59

Standard Actions ... 61

<jsp:useBean>.. 61

<jsp:setProperty> ... 64

<jsp:getProperty>... 66

<jsp:include> ... 67

<jsp:forward>... 68

<jsp:param> ... 69

<jsp:plugin> ... 70

Chapter 3: The JSP Container.. 72
Contents vi

The JSP Page Model ..72

JSP Page Implementation Class ...74

API Contracts ... 75

Request and Response Parameters 76

Omitting the extends Attribute ... 76

Using the extends Attribute .. 79

Buffering..79

Precompilation ...80

Request Parameter Names .. 80

Precompilation Protocol ... 80

Chapter 4: Scripting...82

Overall Structure..82

Declarations Section ..84

Initialization Section ..84

Main Section..84

Chapter 5: Tag Extensions ...86

Introduction ...86

Goals... 87

Overview .. 87

Examples .. 89

Tag Library ..91

Packaged Tag Libraries... 91

Location of Java Classes... 92

Tag Library directive .. 92

Tag Library Descriptor ..92

Locating a Tag Library Descriptor...................................... 93

Translation-Time Class Loader... 95
vii JavaServer Pages 1.1 Specification • November 30, 1999

Assembling a Web Application .. 95

Well-Known URIs.. 95

The Tag Library Descriptor Format 96

Tag Handlers ... 100

Properties ... 100

Basic Protocol: Tag Interface ... 101

The TagSupport Base Class.. 103

Body Protocol: BodyTag Interface 103

The BodyContent Class.. 105

The BodyTagSupport Base Class 105

Life-Cycle Considerations ... 106

Scripting Variables .. 108

Cooperating Actions.. 109

Ids and PageContext... 109

Run-Time Stack ... 109

Validation.. 110

Syntactic Information on the TLD 110

Syntactic Information in a TagExtraInfo Class 110

Raising an Error at Action Time .. 110

Conventions and Other Issues ... 111

How to Define New Implicit Objects 111

Access to Vendor-Specific information 111

Customizing a Tag Library... 112

Chapter 6: JSP Technology Classes .. 114

Package javax.servlet.jsp... 114

JspPage and HttpJspPage ... 114

JspWriter .. 115
Contents viii

JspException and JspError.. 117

PageContext.. 117

JspEngineInfo ... 121

JspFactory... 121

Package javax.servlet.jsp.tagext...121

Chapter 7: JSP Pages as XML Documents.......................................124

Why an XML Representation ..124

Document Type..125

The jsp:root Element .. 125

Public ID .. 125

Directives...125

The page directive .. 125

The include Directive ... 126

The taglib Directive .. 126

Scripting Elements ...126

Declarations.. 127

Scriptlets ... 127

Expressions... 127

Actions...128

Transforming a JSP Page into an XML Document128

Quoting Conventions .. 129

Request-Time Attribute Expressions 129

DTD for the XML document ...129

Appendix A: Examples...132

Simple Examples .. 132

Call Functionality, no Body .. 132

Call Functionality, No Body, Define Object......................... 133
ix JavaServer Pages 1.1 Specification • November 30, 1999

Template Mechanisms .. 133

A 0.92-like useBean .. 133

A Set of SQL Tags.. 134

Connection, UserId, and Password 134

Query... 135

Iteration ... 135

Appendix B: Implementation Notes ... 138

Delivering Localized Content... 138

Processing TagLib directives.. 138

Processing Tag Libraries .. 139

Processing a Tag Library Descriptor 139

Processing a JSP page ... 139

Generating the JSP Page Implementation Class 140

An Example... 140

Implementing Buffering ... 144

Appendix C: Packaging JSP Pages... 146

A very simple JSP page .. 146

The JSP page packaged as source in a WAR file 146

The Servlet for the compiled JSP page... 147

The Web Application Descriptor.. 148

The WAR for the compiled JSP page... 149

Appendix D: Future ... 150

Meta-Tag Information .. 150

Standard Tags ... 150

Additional Application Support.. 150

JSP, XML and XSL Technologies ... 151

Appendix E: Changes .. 152
Contents x

Changes between 1.1 PR2 and 1.1 final ... 152

Changes ... 152

Changes between 1.1 PR1 and PR2.. 153

Additions ... 153

Changes ... 153

Changes between 1.1 PD1 and PR1 ... 154

Additions ... 154

Changes ... 154

Deletions ... 155

Changes between 1.0 and 1.1 PD1 ... 155

Additions ... 155

Changes ... 155

Removals... 155

Appendix F: Glossary ..156
xi JavaServer Pages 1.1 Specification • November 30, 1999

Contents xii

xiii JavaServer Pages 1.1 Specification • November 30, 1999

Preface

This is the final version of the JavaServer Pages™ 1.1 Specification. This specification has
been developed following the Java Community Process. Comments from Experts,
Participants, and the Public have been reviewed and incorporated into the specification where
applicable.

JSP 1.1 extends JSP 1.0 by:

n Using Servlet 2.2 as the foundations for its semantics.

n Enabling the delivery of translated JSP pages into JSP containers.

n Providing a portable Tag Extension mechanism.

Details on the conditions under which this document is distributed are described in the
license on page 2.

Who should read this document

This document is intended for:

• Web Server and Application Server vendors that want to provide JSP containers that
conform to the Tag Extensions specification.

• Web Authoring Tool vendors that want to generate JSP pages that conform to the Tag
Extensions specification.

• Service providers that want to deliver functionality as tag libraries.

• Sophisticated JSP page authors that want to define new tag libraries for their use, or who
are responsible for creating tag libraries for the use of a group.

• Eager JSP page authors who do not want to or cannot wait for Web Authoring Tools, or
even a User’s Guide.

This document is not a User’s Guide, but it contains some positioning and explanatory
material.
Preface xiv

Related Documents

JSP 1.1 requires only JDK™ 1.1 but it can take advantage of the Java 2 platform.

Implementors of JSP containers and authors of JSP pages will be interested in a number of
other documents, of which the following are worth mentioning explicitly.

TABLE P-1 Some Related Documents

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

JDK 1.1 http://java.sun.com/products/jdk/1.1

Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.2

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home page http://java.sun.com/xml

JavaBeans™ technology home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org
xv JavaServer Pages 1.1 Specification • November 30, 1999

Acknowledgments
Many people contributed to the JavaServer Pages specifications. In addition to the people
who helped with the JSP 1.0 specification and reference implementation we want to thank a
few individuals for their special effort on the JSP 1.1 specification:

We want to thank the following people from Sun Microsystems: Suzanne Ahmed, Janet
Breuer, Abhishek Chauhan, James Davidson, Chris Ferris, Michaela Gubbels, Mark Hapner,
Jim Inscore, Costin Manalache, Rajiv Mordani, Mandar Raje, Bill Shannon, James Todd,
Vanitha Venkatraman, Anil Vijendran, Connie Weiss and Cara Zanoff France.

The success of the Java Platform depends on the process used to define and evolve it. This
open process permits the development of high quality specifications in internet time and
involves many individuals and corporations. Although it is impossible to list all the
individuals who have contributed, we would like to give thanks explicitly to the following
individuals: JJ Allaire, Elias Bayeh, Hans Bergsten, Vince Bonfanti, Bjorn Carlston, Shane
Claussen, Mike Conner, Scott Ferguson, Bob Foster, Mike Freedman, Chris Gerken, Sanjeev
Kumar, Craig McClanahan, Rod Magnuson, Stefano Mazzocchi, Rod McChesney, Dave
Navas, Tom Reilly, Simeon Simeonov, and Edwin Smith. Apologies to any we may have
missed.

Last, but certainly not least important, we thank the software developers, Web authors and
members of the general public who have read this specification, used the reference
implementation, and shared their experience. You are the reason the JavaServer Pages
technology exists.
Preface xvi

xvii JavaServer Pages 1.1 Specification • November 30, 1999

CHAPTER 1

Overview

This chapter provides an overview of the JavaServer Pages technology.

1.1 The JavaServer Pages™ Technology
JavaServer Pages™ technology is the Java™ platform technology for building applications
containing dynamic Web content such as HTML, DHTML, XHTML and XML. The
JavaServer Pages technology enables the authoring of Web pages that create dynamic content
easily but with maximum power and flexibility.

The JavaServer Pages technology offers a number of advantages:

• Write Once, Run Anywhere™ properties

The JavaServer Pages technology is platform independent, both in its dynamic Web pages,
its Web servers, and its underlying server components. You can author JSP pages on any
platform, run them on any Web server or Web enabled application server, and access them
from any Web browser. You can also build the server components on any platform and run
them on any server.

• High quality tool support

The Write Once, Run Anywhere properties of JSP allows the user to choose best-of-breed
tools. Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

• Reuse of components and tag libraries

The JavaServer Pages technology emphasizes the use of reusable components such as:
JavaBeans™ components, Enterprise JavaBeans™ components and tag libraries. These
components can be used in interactive tools for component development and page
composition. This saves considerable development time while giving the cross-platform
power and flexibility of the Java programming language and other scripting languages.
 Overview 18

ment

s the
first
• Separation of dynamic and static content

The JavaServer Pages technology enables the separation of static content from dynamic
content that is inserted into the static template. This greatly simplifies the creation of
content. This separation is supported by beans specifically designed for the interaction
with server-side objects, and, specially, by the tag extension mechanism.

• Support for scripting and actions

The JavaServer Pages technology supports scripting elements as well as actions. Actions
permit the encapsulation of useful functionality in a convenient form that can also be
manipulated by tools; scripts provide a mechanism to glue together this functionality in a
per-page manner.

• Web access layer for N-tier enterprise application architecture(s)

The JavaServer Pages technology is an integral part of the Java 2 Platform Enterprise
Edition (J2EE), which brings Java technology to enterprise computing. You can now
develop powerful middle-tier server applications, using a Web site that uses JavaServer
Pages technology as a front end to Enterprise JavaBeans components in a J2EE compliant
environment.

1.2 What is a JSP Page?
A JSP page is a text-based document that describes how to process a request to create a
response. The description intermixes template data with some dynamic actions and leverages
on the Java Platform.

The features in the JSP technology support a number of different paradigms for authoring of
dynamic content; some of them are described in Section 1.6. The next couple of examples
only attempt to present the technical components of the JSP specification and are not
prescribing “good” or “bad” paradigms.

An Example Using Scripting and Beans

An simple example of a JSP page is shown in FIGURE 1-1. The example shows the response
page, which is intended to be a short list with the day of the month and year at the mo
when the request is received. The page itself contains fixed template text and additional
elements described by the JSP specification that are shown underlined in the figure. A
request reaches the page, the response is created based on the template text. As the
element is reached, a server-side Bean object is created with name clock and type
19 JavaServer Pages 1.1 Specification • November 30, 1999

 a
calendar.jspCalendar. This object can be used and modified later in the page. In
particular, the next two elements access properties of the object and insert these values into
the response page as strings.

FIGURE 1-1 A JSP Page using Beans and Scripting

An Example Using a Tag Library

FIGURE 1-2 is another example of a JSP page. This page uses custom actions to create the
server-side object and then to produce the response data. In the example, a taglib directive
first makes available into this page a tag library for data base queries. The directive indicates
the tag library to use and provides a prefix to use locally in this page to name those actions.

Designing tag libraries is a delicate effort, analogous to that of designing a language; we are
making no special effort here to define tags that are useful for any but pedagogical purposes.
For the purposes of this example, we will assume that this fictitious tag library introduces
four actions :

A queryBlock action introduces a data base connection; it can contain queryStatement
actions and queryCreateRow actions. The connData attribute refers to connection-specific
data, like login and password, that are to be defined elsewhere; see Appendix 5.8.3 for
suggestions on where to place the information.

A queryStatement action must be enclosed in a queryBlock. A queryStatement’s body is
SQL statement; it will use the connection data defined in the enclosing queryBlock.

JSP Container JSP Page

request

response

<html>
<jsp:useBean id=”clock”

class=”calendar.jspCalendar” />

Day: <%=clock.getDayOfMonth() %>
Year: <%=clock.getYear() %>

</html>
Chapter 1 Overview 20

n
A queryCreateRows action must be enclosed in a queryBlock action. A
queryCreateRows action will iterate over the results of the last executed query and will
generate up to as many rows as requested.

A queryDisplay action must be enclosed in a queryCreateRows action. A
queryDisplay action will access the requested field from the current iteration in
queryCreateRows and insert the value into the out object.

FIGURE 1-2 A JSP page using custom actions

In this example:

• The x:queryCreateRows action implicitly refers to the object created by the
x:queryStatement within the same x:queryBlock

• The x:queryDisplay actions refer to the current row in the query result that is being
iterated over by x:queryCreateRows

• The code that locates a connection (perhaps from a connection pool), performs the
JDBC™ API query, and navigates through the result of this query is hidden in the
implementation of the custom actions. This encourages division of labor and isolatio
from changes.

<html>
<%@ taglib uri=”http://acme.com/taglibs/simpleDB.tld” prefix=”x” %>
<x:queryBlock connData=”conData1”>

<x:queryStatement>
SELECT ACCOUNT, BALANCE FROM ...

</x:queryStatement>
The top 10 accounts and balances are:
<table>

<tr><th>ACCOUNT</th><th>BALANCE</th></tr>
<x:queryCreateRows from=”1” to=”10”>

<td><x:queryDisplay field=”ACCOUNT”/></td>
<td><x:queryDisplay field=”BALANCE”/></td>

</x:queryCreateRows>
</table>

</x:queryBlock>
</html>
21 JavaServer Pages 1.1 Specification • November 30, 1999

Components and Containers

The JavaServer Pages technology builds on the Servlet standard extension. JavaServer Pages
is a Standard Extension that is defined extending the concepts in the Servlet Standard
Extension. JSP 1.1 uses the classes from Java Servlet 2.2 specification.

JSP pages and Servlet classes are collectively referred as Web Components. JSP pages are
delivered to a Container that provides the services indicated in the JSP Component Contract.

JSP 1.1 and Servlet 2.2 rely only on features in the Java Runtime Environment 1.1, although
they are compatible with, and can take advantage of, the Java 2 Runtime Environment.

1.3 Features in JSP 1.1
The JavaServer Pages specification includes:

• Standard directives

• Standard actions

• Script language declarations, scriptlets and expressions

• A portable tag extension mechanism.

Most of the integration of JSP pages within the J2EE platform is inherited from the reliance
on the Servlet 2.2 specification.

1.4 Overview of JSP Page Semantics
This section provides an overview of the semantics of JSP pages

1.4.1 Translating and Executing JSP Pages

A JSP page is executed in a JSP container, which is installed on a Web server, or on a Web
enabled application server. The JSP container delivers requests from a client to a JSP page
and responses from the JSP page to the client. The semantic model underlying JSP pages is
that of a servlet: a JSP page describes how to create a response object from a request object
for a given protocol, possibly creating and/or using in the process some other objects.
Chapter 1 Overview 22

All JSP containers must support HTTP as a protocol for requests and responses, but a
container may also support additional request/response protocols. The default request and
response objects are of type HttpServletRequest and HttpServletResponse,
respectively.

A JSP page may also indicate how some events are to be handled. In JSP 1.1 only init and
destroy events can be described: the first time a request is delivered to a JSP page a jspInit()
method, if present, will be called to prepare the page. Similarly, a JSP container can reclaim
the resources used by a JSP page at any time that a request is not being serviced by the JSP
page by invoking first its jspDestroy() method; this is the same life-cycle as that of Servlets.

A JSP page is represented at request-time by a JSP page implementation class that
implements the javax.servlet.Servlet interface. JSP pages are often implemented
using a JSP page translation phase that is done only once, followed by some request
processing phase that is done once per request. The translation phase creates the JSP page
implementation class. If the JSP page is delivered to the JSP container in source form, the
translation of a JSP source page can occur at any time between initial deployment of the JSP
page into the runtime environment of a JSP container and the receipt and processing of a
client request for the target JSP page.

A JSP page contains some declarations, some fixed template data, some (perhaps nested)
action instances, and some scripting elements. When a request is delivered to a JSP page, all
these pieces are used to create a response object that is then returned to the client. Usually,
the most important part of this response object is the result stream.

1.4.2 Compiling JSP Pages

JSP pages may be compiled into its JSP page implementation class plus some deployment
information. This enables the use of JSP page authoring tools and JSP tag libraries to author
a Servlet. This has several benefits:

• Removal of the start-up lag that occurs when a JSP page delivered as source receives the
first request.

• Reduction of the footprint needed to run a JSP container, as the java compiler is not
needed.

If a JSP page implementation class depends on some support classes in addition to the JSP
1.1 and Servlet 2.2 classes, the support classes will have to be included in the packaged WAR
so it will be portable across all JSP containers.

Appendix C contains two examples of packaging of JSP pages. One shows a JSP page that is
delivered in source form (probably the most common case) within a WAR. The other shows
how a JSP page is translated into a JSP page implementation class plus deployment
information indicating the classes needed and the mapping between the original URL that
was directed to the JSP page and the location of the Servlet.
23 JavaServer Pages 1.1 Specification • November 30, 1999

h

ith

t back
ces to

r the
me

at
ine an
2.7.1,
ted

ll
e
m

t
may or
1.4.3 Objects and Scopes

A JSP page can create and/or access some Java objects when processing a request. The JSP
specification indicates that some objects are created implicitly, perhaps as a result of a
directive (see Section 2.8, “Implicit Objects”); other objects are created explicitly throug
actions; objects can also be created directly using scripting code, although this is less
common. The created objects have a scope attribute defining where there is a reference to the
object and when that reference is removed.

The created objects may also be visible directly to the scripting elements through some
scripting-level variables (see Section 1.4.7, “Objects and Variables”).

Each action and declaration defines, as part of its semantics, what objects it defines, w
what scope attribute, and whether they are available to the scripting elements.

Objects are always created within some JSP page instance that is responding to some request
object. There are several scopes:

• page - Objects with page scope are accessible only within the page where they are
created. All references to such an object shall be released after the response is sen
to the client from the JSP page or the request is forwarded somewhere else. Referen
objects with page scope are stored in the pageContext object.

• request - Objects with request scope are accessible from pages processing the same
request where they were created. All references to the object shall be released afte
request is processed; in particular, if the request is forwarded to a resource in the sa
runtime, the object is still reachable. References to objects with request scope are stored
in the request object.

• session - Objects with session scope are accessible from pages processing requests th
are in the same session as the one in which they were created. It is not legal to def
object with session scope from within a page that is not session-aware (see Section
“The page Directive”). All references to the object shall be released after the associa
session ends. References to objects with session scope are stored in the session object
associated with the page activation.

• application - Objects with application scope are accessible from pages processing
requests that are in the same application as they one in which they were created. A
references to the object shall be released when the runtime environment reclaims th
ServletContext. Objects with application scope can be defined (and reached) fro
pages that are not session-aware. References to objects with application scope are stored
in the application object associated with a page activation.

A name should refer to a unique object at all points in the execution, i.e. all the differen
scopes really should behave as a single name space. A JSP container implementation
not enforce this rule explicitly due to performance reasons.
Chapter 1 Overview 24

1.4.4 Fixed Template Data

Fixed template data is used to describe those pieces that are to be used verbatim either in the
response or as input to JSP actions. For example, if the JSP page is creating a presentation in
HTML of a list of, say, books that match some search conditions, the template data may
include things like the , , and something like The following book...

This fixed template data is written (in lexical order) unchanged onto the output stream
(referenced by the implicit out variable) of the response to the requesting client.

1.4.5 Directives and Actions

There may be two types of elements in a JSP page: directives or actions. Directives provide
global information that is conceptually valid independent of any specific request received by
the JSP page. For example, a directive can be used to indicate the scripting language to use
in a JSP page. Actions may, and often will, depend on the details of the specific request
received by the JSP page. If a JSP container uses a compiler or translator, the directives can
be seen as providing information for the compilation/translation phase, while actions are
information for the subsequent request processing phase.

An action may create some objects and may make them available to the scripting elements
through some scripting-specific variables.

Directive elements have a syntax of the form

<%@ directive ...%>

Action elements follow the syntax of XML elements, i.e. have a start tag, a body and an end
tag:

<mytag attr1=”attribute value” ...>
 body
</mytag>

or an empty tag

<mytab attr1=”attribute value” .../>

An element has an element type describing its tag name, its valid attributes and its semantics;
we refer to the type by its tag name.

Tag Extension Mechanism

An element type abstracts some functionality by defining a specialized (sub)language that
allows more natural expression of the tasks desired, can be read and written more easily by
tools and also can even contribute specialized yet portable tool support to create them.
25 JavaServer Pages 1.1 Specification • November 30, 1999

along

ipting
ustom
d their

that

at

e used
.
ponse
ream.

uage.
ting

 Java

 the
d.

g
rt tag
the
The JSP specification provides a Tag Extension mechanism (see Chapter 5) that enables the
addition of new actions, thus allowing the JSP page “language” to be easily extended in a
portable fashion. A typical example would be elements to support embedded database
queries. Tag libraries can be used by JSP page authoring tools and can be distributed
with JSP pages to any JSP container like Web and Application servers.

The Tag Extension mechanism can be used from JSP pages written using any valid scr
language, although the mechanism itself only assumes a Java run time environment. C
actions provide access to the attribute values and to their body; they can be nested an
bodies can include scripting elements.

1.4.6 Scripting Languages

Scripting elements are commonly used to manipulate objects and to perform computation
affects the content generated. There are three classes of scripting elements: declarations,
scriptlets and expressions. Declarations are used to declare scripting language constructs th
are available to all other scripting elements. Scriptlets are used to describe actions to be
performed in response to some request. Scriplets that are program fragments can also b
to do things like iterations and conditional execution of other elements in the JSP page
Expressions are complete expressions in the scripting language that get evaluated at res
time; commonly the result is converted into a string and then inserted into the output st

All JSP containers must support scripting elements based on the Java programming lang
Additionally, JSP containers may also support other scripting languages. All such scrip
languages must support:

• Manipulation of Java objects.

• Invocation of methods on Java objects.

• Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements based on the
programming language is given in Chapter 4.

The semantics for other scripting languages are not precisely defined in this version of
specification, which means that portability across implementations cannot be guarantee
Precise definitions may be given for other languages in the future.

1.4.7 Objects and Variables

An object may be made accessible to code in the scripting elements through a scriptin
language variable. An element can define scripting variables in two places: after its sta
and after its end tag. The variables will contain at process request-time a reference to
object defined by the element, although other references exist depending on the scope of the
object (see Section 1.4.3, “Objects and Scopes”).
Chapter 1 Overview 26

e

ay be

 that
pting
e Bean

.

 any

the

n
lso
tly
g”
d
An element type indicates the name and type of such variables although details on the name
of the variable may depend on the Scripting Language. The scripting language may also
affect how different features of the object are exposed; for example, in the JavaBeans
specification, properties are exposed via getter and setter methods, while these are available
directly in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language specific. Chapter 4
defines the rules for when the language attribute of the page directive is “java”.

1.4.8 Scripts, Actions, and Beans

Scripting elements, actions and Beans are all mechanisms that can be used to describ
dynamic behavior in JSP pages. Different authors and authoring tools can use these
mechanisms in different ways based on their needs and their preferences. The JSP
specification does not restrict their use but this section provides some guidelines that m
useful to understand their relative strengths.

Beans are a well-known and well-supported component framework for the Java platform
can be accessed easily from the Java programming language and other JSP page scri
languages. Some JSP page authors, or their support organizations, may create or reus
components to use from their JSP pages.

Actions provide an abstraction that can be used to easily encapsulate common actions
Actions typically create and / or act on (server-side) objects, often Beans.

The JSP specification provides some standard actions that can be used to interact with
Bean. If the Bean is extended so it implements the Tag interface, then the Bean becomes a
tag handler and it can be used directly in the JSP page with improved integration into
template data.

Scripting elements are very flexible; that is their power but also their danger as they ca
make hard understanding and maintain a page that uses them extensively; they may a
make it hard for an authoring tool. In some development contexts, JSP pages will mos
contain only actions (standard or custom) with scripting elements only used as a “gluin
mechanism that can be used to “fill-in” the actions that are described using actions (an
Beans and EJB components). In other development contexts JSP pages may contain
significant amounts of scripting elements.

1.4.9 JSP, HTML, and XML

The JSP specification is designed to support the dynamic creation of several types of
structured documents, especially those using HTML and XML.
27 JavaServer Pages 1.1 Specification • November 30, 1999

In general, a JSP page uses some data sent to the server in an HTTP request (for example, by
a QUERY argument or a POST method) to interact with information already stored on the
server, and then dynamically creates some content which is then sent back to the client. The
content can be organized in some standard format (like HTML, DHTML, XHTML, XML,
etc.), in some ad-hoc structured text format, or not at all.

There is another relationship between JSP and XML: a JSP page has a standard translation
into a valid XML document. This translation is useful because it provides a standard
mechanism to use XML tools and APIs to read, manipulate, and author JSP documents. The
translation is defined in Chapter 7. JSP 1.1 processors are not required to accept JSP pages in
this standard XML syntax, but this may be required in a future version of the JSP
specification.

1.5 Web Applications
A prototypical Web application can be composed from:

• Java Runtime Environment(s) running in the server (required)

• JSP page(s), that handle requests and generate dynamic content

• Servlet(s), that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML and similar pages.

• Client-side Java Applets, JavaBeans components, and arbitrary Java class files

• Java Runtime Environment(s) (downloadable via the Plugin) running in client(s)

JSP 1.1 supports portable packaging and deployment of Web Applications through the
Servlet 2.2 specification. The JavaServer Pages specification inherits from the Servlet
specification the concepts of Applications, ServletContexts, Sessions, Requests and
Responses. See that specification for more details.

1.6 Application Model
JSP pages can be used in combination with Servlets, HTTP, HTML, XML, Applets,
JavaBeans components and Enterprise JavaBeans components to implement a broad variety
of application architecture(s) or models.
Chapter 1 Overview 28

allows
of the
us
1.6.1 Simple 21/2-Tier Application

The simple 2-tier model (accessing a database in the example above) describes the cgi-bin
replacement architecture that the Servlet model first enabled. This allows a JSP (or a Servlet)
to directly access some external resource (such as a database or legacy application) to service
a client’s request. The advantage of such a scheme is that it is simple to program, and
the page author to easily generate dynamic content based upon the request and state
resource(s). However this architecture does not scale for a large number of simultaneo
clients since each must establish/or share (ad-hoc) a (potentially scarce/expensive)
connection to the resource(s) in question.

1.6.2 N-tier Application

Browser JSP
HTTP/HTML/XML Java method invocation (JDBC)

Browser JSP EJB
RMI/IIOPHTTP/HTML/XML
29 JavaServer Pages 1.1 Specification • November 30, 1999

s do
r by
In this model the application is composed of (n>=3) tiers, where the middle tier, the JSP,
interacts with the back end resources via an Enterprise JavaBeans component. The Enterprise
JavaBeans server and the EJB provide managed access to resources thus addressing the
performance issues. An EJB server will also support transactions and access to underlying
security mechanisms to simplify programming. This is the programming model supported by
the Java 2 Platform Enterprise Edition (J2EE).

1.6.3 Loosely Coupled Applications

In this model we have two loosely coupled applications (either on the same Intranet, or over
an Extranet or the Internet). These applications may be peers, or act as client or server for the
other. A common example of this is supply chain applications between vendor enterprises. In
such situations it is important that each participant be isolated from changes in the
implementation of it’s dependents. In order to achieve this loose coupling the application
not communicate using a fine grain imperative interface contract like those provided fo
RMI/IIOP or Java IDL. The applications communicate with each other via HTTP, using
either HTML or XML to/from a JSP page.

JSP

JSPSession EJB

Session EJB

HTTP/HTML/XML

RMI/IIOP

RMI/IIOP
RMI/IIOP

intra/inter/extranet

RMI/IIOP
Chapter 1 Overview 30

1.6.4 Using XML with JSP Technology

The JavaServer Pages technology is an ideal way to describe processing of XML input and
output. Simple XML generation can be done by just writing the XML as static template
portions within the JSP page. Dynamic generation will be done through JavaBeans
components, Enterprise JavaBeans components, or via custom actions that generate XML.
Similarly, input XML can be received from POST or QUERY arguments and then sent
directly to JavaBeans components, Enterprise JavaBeans components, or custom actions, or
manipulated via the scripting.

There are two attributes of the JSP technology that make it specially suited for describing
XML processing. One is that XML fragments can be described directly in the JSP page either
as templates for input into some XML-consuming component, or as templates for output to
be extended with some other XML fragments. Another attribute is that the tag extension
mechanism enables the creation of specific actions and directives that are targeted at useful
XML manipulation operations.

Future versions of the JSP specification may include several standard actions that will
support XML manipulation, including the transformation of the XML produced by the given
JSP page using XTL/XSL.

Client

JSP
HTTP/XML

XML Parser

HTTP/HTML &| XML
XTL/XSL

RMI/IIOP (XML)

RMI/IIOP (XML)

Scripts

Tags

Template
XML

DOM
31 JavaServer Pages 1.1 Specification • November 30, 1999

1.6.5 Redirecting Requests

It is common that the data to be sent to the client varies significantly depending on properties
of the client that are either directly encoded in the request object or can be discovered based
on some user/client profile (e.g. stored in a login database). In this case it is very convenient
to have the initial JSP page determine details about the request, perhaps create and/or update
some server-side objects, and then, if necessary, redirect the request to a different JSP page.

This programming model is supported by the underlying Servlet APIs. The properties of the
HTTP protocol are such that the redirect cannot be done if the response stream has started
being sent back to the client; this characteristic makes the description of some common
situations quite inconvenient. To address this, the JSP specification by default indicates
buffering on the output stream. The JSP page can redirect the request at any point before
flushing the output buffer.

Buffering is also very convenient for error page handling, since that is done by redirecting
the request.

Presentation JSP pages and Front JSP pages

In a slight variation of this model, the front component (a Servlet or a JSP) only creates and/
or updates the server-side objects. In this organization, the front component does no
presentation at all; instead all presentation is done by a presentation component. Although
the front component could be written as a Servlet since it does no presentation, writing it as
a JSP page enables the use of custom actions for the creation and update of the server-side
objects. The presentation component will almost in all cases be a JSP page, and it will most
likely access the server-side objects through custom actions1.

1. Readers of the original JSP 0.92 draft will recognize the combination “front component is servlet and presentation
component is JSP” as the model 2 mentioned in that draft.

Request

Response

JSP/Servlet

JSP/Servlet

redirect requestClient

create/update
Server-
Side
Objects

access/update
Chapter 1 Overview 32

1.6.6 Including Requests

Another useful application model involves request includes. In this model, the request
reaches an initial JSP page. The page may start generating/composing some result but at
some point it may want to dynamically include the contents of some other page. These
contents may be static but may also be dynamically generated by some other JSP page,
Servlet class, or some legacy mechanism like ASP.

Although in some cases this inclusion model is applicable to presentation-dependent
contents, it is most often used in the context of a presentation-independent content, like when
the data generated is actually XML (which may be converted later into some other format
using, say, XSL).

Request

Response

JSP/Servlet

JSP/Servlet

include request

Client

create/update
Server-
Side
Objects

access/update
33 JavaServer Pages 1.1 Specification • November 30, 1999

CHAPTER 2

Standard Syntax and Semantics

This chapter describes the core syntax and semantics of the JavaServer Pages (JSP) 1.1
Specification, including the standard actions.

2.1 General Syntax Rules
The following general syntax rules apply to all elements in JSP pages.

2.1.1 Elements and Template Data

A JSP page has some elements and some template data. The elements are instances of some
element types that are known to the JSP container; template data is everything else: i.e.
anything that the JSP container does not understand.

The type of an element describes its syntax and its semantics. If the element has attributes,
the type also describes the attribute names, their valid types, and their interpretation. If the
element defines objects, the semantics includes what objects it defines and their types.

There are three types of elements: directive elements, scripting elements, and action
elements; the corresponding syntax is described below. Template data is uninterpreted; it is
usually passed through to the client, or to some processing component.

2.1.2 Element Syntax

Most of the JSP syntax is based on XML. Elements based on the XML syntax have either a
start tag (including the element name) possibly with attributes, an optional body, and a
matching end tag, or they have an empty tag possibly with attributes:
 Standard Syntax and Semantics 34

<mytag attr1=”attribute value” ...>
body
</mytag>

and

<mytab attr1=”attribute value” .../>

JSP tags are case-sensitive, as in XML and XHTML.

Scripting elements and directives are written using a syntax that is easier to author by hand.
Elements using the alternative syntax are of the form <%.....%>.

All JSP pages have an equivalent valid XML document. A future JSP specification may
require for JSP containers to accept JSP pages as well as their equivalent XML documents.
Chapter 7 describes the XML equivalent syntax for the scripting elements and directives;
these XML element types are not intended to be used within a JSP page but in the equivalent
XML document.

2.1.3 Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start and end in the
same file. You cannot begin a tag in one file and end it in another.

This applies also to elements in the alternate syntax. For example, a scriptlet has the syntax
<% scriptlet %>. Both the opening <% characters and the closing %> characters must be in
the same physical file.

2.1.4 Empty Elements

Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag.

2.1.5 Attribute Values

Following the XML specification, attribute values always appear quoted. Both single and
double quotes can be used. The entities ' and " are available to describe single
and double quotes.

See also Section 2.12.1, “Request Time Attribute Values”.
35 JavaServer Pages 1.1 Specification • November 30, 1999

2.1.6 White Space

In HTML and XML, white space is usually not significant, with some exceptions. One
exception is that an XML file must start with the characters <?xml, with no leading
whitespace characters.

This specification follows the whitespace behavior defined for XML, that is; all white space
within the body text of a document is not significant, but is preserved.

For example, since directives generate no data and apply globally to the JSP page, the
following input file is translated into the corresponding result file:

For this input,

The result is

As another example, for this input,

The result is

<?xml version=”1.0” ?>

This is the default value <%@ page buffer=”8kb” %>

The rest of the document goes here

<?xml version=”1.0” ?>
note the empty line

The rest of the document goes here

<% response.setContentType(“....”);
note no white between
the two elements

whatever... %><?xml version=”1.0” ?>

<%@ page buffer=”8kb” %>

The rest of the document goes here

no leading space <?xml version=”1.0” ?>
note the empty line

The rest of the document goes here
Chapter 2 Standard Syntax and Semantics 36

2.2 Error Handling
There are two logical phases in the lifecycle/processing of a JavaServer Page source file:

• Translation (or compilation) from JSP page source into a JSP page implementation class
file.

• Per client request processing by an instance of the JSP page implementation class.

Errors may occur at any point during processing of either phase. This section describes how
such errors are treated by a compliant implementation.

2.2.1 Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implementation class
using the Java technology by a JSP container can occur at any time between initial
deployment of the JSP page into the runtime environment of a JSP container, and the receipt
and processing of a client request for the target JSP page. If translation occurs prior to the
JSP container receiving a client request for the target (untranslated) JSP page then error
processing and notification is implementation dependent. Fatal translation failures shall result
in subsequent client requests for the translation target to also be failed with the appropriate
error; for HTTP protocols, error status code 500 (Server Error).

2.2.2 Client Request Time Processing Errors

During the processing of client requests, arbitrary runtime errors can occur in either the body
of the JSP page implementation class or in some other code (Java or other implementation
programming language) called from the body of the JSP page implementation class. Such
errors are realized in the page implementation using the Java programming language
exception mechanism to signal their occurrence to caller(s) of the offending behavior1.

These exceptions may be caught and handled (as appropriate) in the body of the JSP page
implementation class.

However, any uncaught exceptions thrown from the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the
errorPage URL specified by the offending JSP page (or the implementation default
behavior, if none is specified).

1. Note that this is independent of scripting language; this requires that unhandled errors occurring in a scripting language
environment used in a JSP container implementation to be signalled to the JSP page implementation class via the Java
programming language exception mechanism.
37 JavaServer Pages 1.1 Specification • November 30, 1999

nd

sting

ion

 but
est.

ment
The offending java.lang.Throwable describing the error that occurred is stored in the
javax.ServletRequest instance for the client request using the putAttribute()
method, using the name “javax.servlet.jsp.jspException”. Names starting with
the prefixes “java” and “javax” are reserved by the different specifications of the Java
platform; the “javax.servlet” prefix is used by the Servlet and JSP specifications.

If the errorPage attribute of a page directive names a URL that refers to another JSP, a
that JSP indicates that it is an error page (by setting the page directive’s isErrorPage
attribute to true) then the “exception” implicit scripting language variable of that page
is initialized to the offending Throwable reference.

2.3 Comments
There are two types of comments in a JSP page: comments to the JSP page itself,
documenting what the page is doing; and comments that are intended to appear in the
generated document sent to the client.

Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the reque
client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP container. If the
generated comment is to have dynamic data, this can be obtained through an express
syntax, as in:

<!-- comments <%= expression %> more comments ... -->

JSP Comments

A JSP comment is of the form

<%-- anything but a closing --%> ... --%>

The body of the content is ignored completely. Comments are useful for documentation
also to “comment out” some portions of a JSP page. Note that JSP comments do not n

Note that an alternative way to place a “comment” in JSP is to do so by using the com
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %>
Chapter 2 Standard Syntax and Semantics 38

f the

 a JSP
P

2.4 Quoting and Escape Conventions
The following quoting conventions apply to JSP pages. Anything else is not processed.

Quoting in Scripting Elements
• A literal %> is quoted by %\>

Quoting in Template Text
n A literal <% is quoted by <\%

Quoting in Attributes
• A ‘ is quoted as \’

• A “ is quoted as \”

• A \ is quoted as \\

• A %> is quoted as %\>

• A <% is quoted as <\%

XML Representation

The quoting conventions are different to those of XML. Chapter 7 describes the details o
transformation.

2.5 Overview of Semantics
A JSP page describes how to create a response object from a request object for a given
protocol, possibly creating and/or using some other objects. A JSP page is executed by
container; requests sent to a JSP page are delivered by the JSP container to some JS page
implementation instance that is a subclass of Servlet (see Chapter 3).
39 JavaServer Pages 1.1 Specification • November 30, 1999

 no

 JSP

 JSP
 by
e
2.5.1 Web Applications

A Web Application is a collection of resources that are available through some URLs. The
resources include JSP pages, Java Servlet classes, static pages and other Java technology-
based resources and classes to be used at the server-side as well as Java resources and classes
(like Applets, JavaBeans components, and others) which are to be downloaded for use by the
client. A Web Application is described in more detail in Chapter 9 of the Servlet 2.2
specification.

A Web Application contains a deployment descriptor web.xml that contains information
about the JSP pages, Servlets, and other resources used in the Web Application. The
Deployment Descriptor is described in detail in Chapter 13 of the Servlet 2.2 specification.

JSP 1.1 requires that all these resources are to be implicitly associated with and accessible
through a unique ServletContext instance, which is available as the application
implicit object (Section 2.8). The JSP specification inherits the notions of a Web Application
from the Servlet 2.2 specification.

The application to which a JSP page belongs is reflected in the application object and
has impact on the semantics of the following elements:

• The include directive (Section 2.7.6)

• The jsp:include action element (Section 2.13.4).

• The jsp:forward action (Section 2.13.5).

2.5.2 Relative URL Specifications within an Application

Elements may use relative URL specifications, which are called “URI paths” in the Servlet
2.1 specification. These paths are as in RFC 2396 specification; i.e. only the path part,
scheme nor authority. Some examples are:

“myErrorPage.jsp”
“/errorPages/SyntacticError.jsp”
“/templates/CopyrightTemplate.html”

When such a path starts with a “/”, it is to be interpreted by the application to which the
page belongs; i.e. its ServletContext object provides the base context URL. We call
these paths “context-relative paths”.

When such a path does not start with a “/”, it is to be interpreted relative to the current
page: the current page is denoted by some path starting with “/” which is then modified
the new specification to produce a new path that starts with “/”; this final path is the on
interpreted through the ServletContext object. We call these paths “page-relative
paths”.
Chapter 2 Standard Syntax and Semantics 40

 in

the
e

o by
The JSP specification uniformly interprets all these paths in the context of the Web server
where the JSP page is deployed; i.e. the specification goes through a map translation. The
semantics applies to translation-time phase (i.e. include directives, Section 2.7.6), and to
request-time phase (i.e. to include, Section 2.13.4, and forward, Section 2.13.5,actions).

If a specific tool can ascertain by some mechanism the status of the URL to resource maps at
deployment time, the tool can take advantage of this information.

With the appropriate assertions, the translation phase might be performed before deploying
the JSP page into the JSP container.

2.5.3 Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management and runtime
support for JSP pages and Servlet components. The term Web Container is synonymous to that
a JSP container.

A Web component is either a Servlet or a JSP page. A web component may use the services
of its container. The servlet element in a web.xml deployment descriptor is used to
describe both types of web components; note that most JSP page components are defined
implicitly in the deployment descriptor through the use of an implicit .jsp extension mapping.

2.5.4 JSP Pages

A JSP page implementation class defines a _jspService() method mapping from the request
to the response object. Some details of this transformation are specific to the scripting
language used; see Chapter 4. Most details are not language specific and are described in this
chapter.

Most of the content of a JSP page is devoted to describing what data is written into the
output stream of the response (usually sent back to the client). The description is based on a
JspWriter object that is exposed through the implicit object out (see Section 2.8, “Implicit
Objects”). Its value varies:

• Initially, out is a new JspWriter object. This object may be different from the stream
object from response.getWriter(), and may be considered to be interposed on the latter
order to implement buffering (see Section 2.7.1, “The page Directive”). This is the initial
out object. JSP page authors are prohibited from writing directly to either the
PrintWriter or OutputStream associated with the ServletResponse.

• Within the body of some actions, out may be temporarily re-assigned to a different
(nested) instance of JspWriter object. Whether this is or is not the case depends on
details of the actions semantics. Typically the content, or the results of processing th
content, of these temporary streams is appended to the stream previously referred t
41 JavaServer Pages 1.1 Specification • November 30, 1999

).
nism

d

s the

l
out, and out is subsequently re-assigned to refer to that previous (nesting) stream. Such
nested streams are always buffered, and require explicit flushing to a nesting stream or
discarding of their contents.

• If the initial out JspWriter object is buffered, then depending upon the value of the
autoFlush attribute of the page directive, the content of that buffer will either be
automatically flushed out to the ServletResponse output stream to obviate overflow,
or an exception shall be thrown to signal buffer overflow. If the initial out JspWriter is
unbuffered, then content written to it will be passed directly through to the
ServletResponse output stream.

A JSP page can also describe what should happen when some specific events occur. In JSP
1.1, the only events that can be described are initialization and destruction of the page; these
are described using “well-known method names” in declaration elements (see page 73
Future specifications will likely define more events as well as a more structured mecha
for describing the actions to take.

2.6 Template Text Semantics
The semantics of template (or uninterpreted) Text is very simple: the template text is passe
through to the current out JspWriter implicit object, after applying the substitutions of
Section 2.4, “Quoting and Escape Conventions”.

2.7 Directives
Directives are messages to the JSP container. In JSP 1.1, directives have this syntax:

<%@ directive { attr=”value” }* %>

There may be optional white space after the “<%@” and before “%>”.

This syntax is easy to type and concise but it is not XML-compatible. Section 7 describe
mapping of directives into XML elements.

Directives do not produce any output into the current out stream.

The remainder of this section describes the standard directives that are available on al
conforming JSP 1.1 implementations.
Chapter 2 Standard Syntax and Semantics 42

2.7.1 The page Directive

The page directive defines a number of page dependent attributes and communicates these
to the JSP container.

A translation unit (JSP source file and any files included via the include directive) can
contain more than one instance of the page directive, all the attributes will apply to the
complete translation unit (i.e. page directives are position independent). However, there shall
be only one occurrence of any attribute/value defined by this directive in a given translation
unit with the exception of the “import” attribute; multiple uses of this attribute are
cumulative (with ordered set union semantics). Other such multiple attribute/value
(re)definitions result in a fatal translation error.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP page:

<%@ page info=”my latest JSP Example V1.1” %>

The following directive requests no buffering, indicates that the page is thread safe, and
provides an error page.

<%@ page buffer=”none” isThreadSafe=”yes” errorPage=”/oops.jsp” %>

The following directive indicates that the scripting language is based on Java, that the types
declared in the package com.myco are directly available to the scripting code, and that a
buffering of 16K should be used.

<%@ page language=”java” import=”com.myco.*” buffer=”16k” %>

2.7.1.1 Syntax
<%@ page page_directive_attr_list %>

page_directive_attr_list ::= { language=” scriptingLanguage” }
{ extends=” className” }
{ import=” importList” }
{ session=”true|false” }
{ buffer=”none| sizekb” }
{ autoFlush=”true| false” }
{ isThreadSafe=”true|false” }
{ info=” info_text” }
{ errorPage=” error_url” }
43 JavaServer Pages 1.1 Specification • November 30, 1999

t

{ isErrorPage=”true|false” }
{ contentType=”ctinfo” }

The details of the attributes are as follows:

language Defines the scripting language to be used in the scriptlets, expression
scriptlets, and declarations within the body of the translation unit (the
JSP page and any files included using the include directive below).

In JSP 1.1, the only defined and required scripting language value for
this attribute is “java”. This specification only describes the
semantics of scripts for when the value of the language attribute is
“java”.

When “java” is the value of the scripting language, the Java
Programming Language source code fragments used within the
translation unit are required to conform to the Java Programming
Language Specification in the way indicated in Chapter 4.

All scripting languages must provide some implicit objects that a JSP
page author can use in declarations, scriptlets, and expressions. The
specific objects that can be used are defined in Section 2.8, “Implicit
Objects”.”

All scripting languages must support the Java Runtime Environment
(JRE). All scripting languages must expose the Java technology objec
model to the script environment, especially implicit variables,
JavaBeans component properties, and public methods.

Future versions of the JSP specification may define additional values
for the language attribute and all such values are reserved.

It is a fatal translation error for a directive with a non-”java”
language attribute to appear after the first scripting element has been
encountered.

extends The value is a fully qualified Java programming language class name,
that names the superclass of the class to which this JSP page is
transformed (see Chapter 3).

This attribute should not be used without careful consideration as it
restricts the ability of the JSP container to provide specialized
superclasses that may improve on the quality of rendered service. See
Section 5.8.1 for an alternate way to introduce objects into a JSP page
that does not have this drawback.
Chapter 2 Standard Syntax and Semantics 44

import An import attribute describes the types that are available to the
scripting environment. The value is as in an import declaration in the
Java programming language, i.e. a (comma separated) list of either a
fully qualified Java programming language type name denoting that
type, or of a package name followed by the “.*” string, denoting all
the public types declared one in that package. The import list shall be
imported by the translated JSP page implementation and are thus
available to the scripting environment.

The default import list is java.lang.*, javax.servlet.*,
javax.servlet.jsp.* and javax.servlet.http.*.

This value is currently only defined when the value of the language
directive is “java”.

session Indicates that the page requires participation in an (http) session.

If “ true” then the implicit script language variable named
“session” of type javax.servlet.http.HttpSession
references the current/new session for the page.

If “ false” then the page does not participate in a session; the
“session” implicit variable is unavailable, and any reference to it
within the body of the JSP page is illegal and shall result in a fatal
translation error.

Default is “true”.

buffer Specifies the buffering model for the initial “out” JspWriter to
handle content output from the page.

If “ none”, then there is no buffering and all output is written directly
through to the ServletResponse PrintWriter.

If a buffer size is specified (e.g 12kb) then output is buffered with a
buffer size not less than that specified.

Depending upon the value of the “autoFlush” attribute, the contents
of this buffer is either automatically flushed, or an exception is raised,
when overflow would occur.

The default is buffered with an implementation buffer size of not less
than 8kb.

autoFlush Specifies whether the buffered output should be flushed automatically
(“true” value) when the buffer is filled, or whether an exception
should be raised (“false” value) to indicate buffer overflow.

The default is “true”.

Note: it is illegal to set autoFlush to “false” when
“buffer=none”.
45 JavaServer Pages 1.1 Specification • November 30, 1999

r

,

isThreadSafe Indicates the level of thread safety implemented in the page.

If “ false” then the JSP container shall dispatch multiple outstanding
client requests, one at a time, in the order they were received, to the
page implementation for processing.

If “ true” then the JSP container may choose to dispatch multiple
outstanding client requests to the page simultaneously.

Page authors using “true” must ensure that they properly
synchronize access to page shared state.

Default is “true”.

Note that even if the isThreadSafe attribute is “false” the JSP page
author must ensure that access to any shared objects shared in eithe
the ServletContext or the HttpSession are properly
synchronized. See Section 2.7.2

info Defines an arbitrary string that is incorporated into the translated page
that can subsequently be obtained from the page’s implementation of
Servlet.getServletInfo() method.

isErrorPage Indicates if the current JSP page is intended to be the URL target of
another JSP page’s errorPage.

If “ true”, then the implicit script language variable “exception”
is defined and its value is a reference to the offending Throwable
from the source JSP page in error.

If “ false” then the “exception” implicit variable is unavailable,
and any reference to it within the body of the JSP page is illegal and
shall result in a fatal translation error.

Default is “false”
Chapter 2 Standard Syntax and Semantics 46

t

on

e
e.
2.7.2 Synchronization Issues

JSP Pages inherit the Servlet semantics as described in the Servlet 2.2 specification. In this
section we briefly summarize the threading and distribution issues from that specification, as
they apply to JSP pages.

errorPage Defines a URL to a resource to which any Java programming language
Throwable object(s) thrown but not caught by the page
implementation are forwarded to for error processing.

The provided URL spec is as in Section 2.5.2.

The resource named has to be a JSP page in this version of the
specification.

If the URL names another JSP page then, when invoked that JSP
page’s exception implicit script variable shall contain a reference
to the originating uncaught Throwable.

The default URL is implementation dependent.

Note the Throwable object is transferred by the throwing page
implementation to the error page implementation by saving the objec
reference on the common ServletRequest object using the
setAttribute() method, with a name of

“javax.servlet.jsp.jspException”.

Note: if autoFlush=true then if the contents of the initial
JspWriter has been flushed to the ServletResponse output
stream then any subsequent attempt to dispatch an uncaught excepti
from the offending page to an errorPage may fail.

contentType Defines the character encoding for the JSP page and for the respons
of the JSP page and the MIME type for the response of the JSP pag

Values are either of the form “TYPE” or “TYPE; charset=CHARSET”
with an optional white space after the “;”. CHARSET, if present, must
be the IANA value for a character encoding. TYPE is a MIME type,
see the IANA registry for useful values.

The default value for TYPE is “text/html”; the default value for the
character encoding is ISO-8859-1.

See Section 2.7.4 for complete details on character encodings.
47 JavaServer Pages 1.1 Specification • November 30, 1999

ces not
 by 2

s must
3.2.1

ntation
r

SP
ent

over
l

and
ory

rprise
A Distributed Container is one capable of distributing Web components that are tagged as
distributable across different multiple Java Virtual Machines, perhaps running in different
hosts. A Distributable Application is one tagged as such in its Web deployment descriptor. A
Distributable JSP Page is one in a Distributable Application.

By default, there must be only one instance of a JSP page implementation class per JSP page
definition in a container (Section 3.2 of Servlet 2.2 spec). By default, an instance of a Web
Application must only be run on one Java Virtual Machine at any one time. This behavior
can be overridden by declaring the Application to be Distributable (Chapter 9 of Servlet 2.2.
specification).

A single threaded JSP page is one with a false value for its isThreadSafe attribute of a page
directive. If isThreadSafe=”false” , the JSP page implementation shall implement
javax.servlet.SingleThreadModel , thus indicating that all requests dispatched to
that instance shall be delivered serially to the service() method of the page implementation
class (Section 3.3.3.1 of Servlet 2.2 spec).

However, some implementation(s) may additionally use a pool consisting of multiple page
implementation class instances to do load balancing. Therefore, even when indicating that
the page is not thread safe, a page author cannot assume that all requests mapped to a
particular JSP page shall be delivered to the same instance of that page’s implementation
class. The consequence of this is that an author must assume that any mutable resour
private/unique to a particular page’s instance may be accessed/updated simultaneously
or more instances; thus any static field values, objects with session or application
scope, or objects shared through some other (unspecified) mechanism by such instance
be accessed appropriately synchronized to avoid non-deterministic behaviors (Section
of Servlet 2.2 spec).

In the case of a Distributable JSP page, there is one instance of its JSP page impleme
class per web component definition per Java Virtual Machine in a Distributed Containe
(Section 3.2 of Servlet 2.2 spec).

If multiple web component definitions in the deployment descriptor indicate the same J
page, there will be multiple instances of the JSP page implementation class, with differ
initialization parameters (Section 3.3.1 of Servlet 2.2 spec).

There is only one instance of the ServletContext interface associated with each Web
Application deployed into a Web Container. In cases where the container is distributed
many Java Virtual Machines, there is one instance per web application per Java Virtua
Machine (Section 4.1 of Servlet 2.2 spec).

Context Attributes exist locally to the Java Virtual Machine in which they were created
placed. This prevents the ServletContext from being used as a distributed shared mem
store. If information needs to be shared between servlets running in a distributed
environment, that information should be placed in a session, a database, or in an Ente
JavaBean (Section 4.3.1 of Servlet 2.2 spec).
Chapter 2 Standard Syntax and Semantics 48

page
ge or

f text
racter

t
cribed

he

cribed

ed
Within an application that is marked as distributable, all requests that are part of a session
can only be handled on a single Java Virtual Machine at any one time. In addition all objects
placed into the session must implement the Serializable interface. The servlet container may
throw an IllegalArgumentException if a non serializable object is placed into the session
(Section 7.7.2 in Servlet 2.2 spec).

2.7.3 Specifying Content Types

A JSP page can use the contentType attribute of the page directive to indicate the content
type of the response it provides to requests. Since this value is part of a directive, a given
page will always provide the same content type. If a page determines that the response
should be of a different content type, it should do so “early”, determine what other JSP
or Servlet will handle this request and it should forward the request to the other JSP pa
Servlet.

A registry of content types names is kept by IANA. See:

ftp://venera.isi.edu/in-notes/iana/assignments/media-types/media-types

2.7.4 Delivering Localized Content

The Java Platform support for localized content is based on a uniform representation o
internally as Unicode 2.0 (ISO010646) characters and the support for a number of cha
encodings to and from Unicode.

Any Java Virtual Machine (JVM) must support Unicode and Latin-1 encodings but mos
support many more. The character encodings supported by the JVM from Sun are des
at:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

The JSP 1.1 specification assumes that JSP pages that will deliver content in a given
character encoding will be written in that character encoding. In particular, the
contentType attribute of the page directive describes both the character encoding of t
JSP page and the character encoding of the resulting stream.

The valid names to describe the character encodings are those of IANA. They are des
at:

ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

The contentType attribute must only be used when the character encoding is organiz
such that ASCII characters stand for themselves, at least until the contentType attribute is
found. The directive containing the contentType attribute should appear as early as
possible in the JSP page.
49 JavaServer Pages 1.1 Specification • November 30, 1999

The default character set encoding is ISO-8859-1 (also known as latin-1).

A JSP container may use some implementation-dependent heuristics and/or structure to
determine what is the expected character encoding of a JSP page and then verify that
contentType attribute is as expected.

A JSP container will raise a translation-time error if an unsupported character encoding is
requested.

See Section B.1 for some implementation notes.

2.7.5 Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the JSP 1.1
specification has two include mechanisms suited to different tasks. A summary of their
semantics is shown in TABLE 2-1.

The Spec column describes what type of specification is valid to appear in the given element.
The JSP specification requires a relative URL spec as described in Section 2.5.2. The
reference is resolved by the Web/Application server and its URL map is involved.

An include directive regards a resource like a JSP page as a static object; i.e. the bytes in the
JSP page are included. An include action regards a resource like a JSP page as a dynamic
object; i.e. the request is sent to that object and the result of processing it is included.

2.7.6 The include Directive

The include directive is used to substitute text and/or code at JSP page translation-time.
The <%@ include file=” relativeURLspec” %> directive inserts the text of the
specified resource into the .jsp file. The included file is subject to the access control
available to the JSP container. The file attribute is as in Section 2.5.2.

TABLE 2-1 Summary of Include Mechanisms in JSP 1.1

Syntax What Phase Spec Object Description Section

<%@ include file=... %> directive translation-
time

virtual static Content is parsed by
JSP container.

2.7.6

<jsp:include page= /> action request-time virtual static
and
dynamic

Content is not parsed; it
is included in place.

2.13.4
Chapter 2 Standard Syntax and Semantics 50

e of

uely
n of

ult.

x

te.

ing
fix.
A JSP container can include a mechanism for being notified if an included file changes, so
the container can recompile the JSP page. However, the JSP 1.1 specification does not have
a way of directing the JSP container that included files have changed.

Examples

The following example requests the inclusion, at translation time, of a copyright file. The file
may have elements which will be processed too.

<%@ include file=”copyright.html” %>

2.7.6.1 Syntax
<%@ include file=" relativeURLspec" %>

2.7.7 The taglib Directive

The set of significant tags a JSP container interprets can be extended through a “tag library”.

The taglib directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usag
the actions in the library.

The URI identifying a tag library may be any valid URI as long as it can be used to uniq
identify the semantics of the tag library. A common mechanism is to encoding the versio
a tag library into its URI.

If a JSP container implementation cannot locate (following the rules described in
Section 5.3.1) a tag library description for a given URI, a fatal translation error shall res

It is a fatal translation error for the taglib directive to appear after actions using the prefi
introduced by the taglib directive.

See Chapter 5 for more specification details, and Section B.2 for an implementation no

Examples

In the following example, a tag library is introduced and made available to this page us
the super prefix; no other tags libraries should be introduced in this page using this pre
In this particular case, we assume the tag library includes a doMagic element type, which is
used within the page.
51 JavaServer Pages 1.1 Specification • November 30, 1999

<%@ taglib uri=”http://www.mycorp/supertags” prefix=”super” />
...
<super:doMagic>
...
</super:doMagic>

2.7.7.1 Syntax
<%@ taglib uri=” tagLibraryURI” prefix=” tagPrefix” %>

where the attributes are:

A fatal translation-time error will result if the JSP page translator encounters a tag with name
prefix:Name using a prefix introduced using the taglib directive, and Name is not recognized
by the corresponding tag library.

2.8 Implicit Objects
When you author JSP pages, you have access to certain implicit objects that are always
available for use within scriptlets and expressions, without being declared first. All scripting
languages are required to provide access to these objects.

uri Either an absolute URI or a relative URI specification to be interpreted
as in Section 2.5.2 that uniquely identifies the tag library descriptor
associated with this prefix.

The URI is used to locate a description of the tag library as indicated
in Chapter 5.

tagPrefix Defines the prefix string in <prefix>:<tagname> that is used to
distinguish a custom action, e.g <myPrefix:myTag>

prefixes jsp:, jspx:, java:, javax:, servlet:, sun:, and sunw: are reserved.

Empty prefixes are illegal in this version of the specification.
Chapter 2 Standard Syntax and Semantics 52

Each implicit object has a class or interface type defined in a core Java technology or Java
Servlet API package, as shown in TABLE 2-2.

TABLE 2-2 Implicit Objects Available in JSP Pages

Implicit Variable Of Type What It Represents Scope

request protocol dependent subtype of:
javax.servlet.ServletRequest
e.g:
javax.servlet.HttpServletRequest

The request triggering the
service invocation.

request

response protocol dependent subtype of:
javax.servlet.ServletResponse
e.g:
javax.servlet.HttpServletResponse

The response to the request. page

pageContext javax.servlet.jsp.PageContext The page context for this JSP
page.

page

session javax.servlet.http.HttpSession The session object created for
the requesting client (if any).

This variable is only valid for
Http protocols.

session

application javax.servlet.ServletContext The servlet context obtained
from the servlet configuration
object (as in the call
getServletConfig().get
Context())

application

out javax.servlet.jsp.JspWriter An object that writes into the
output stream.

page

config javax.servlet.ServletConfig The ServletConfig for this
JSP page

page

page java.lang.Object the instance of this page’s
implementation class processing
the current request1

1. When the scripting language is “java” then “page” is a synonym for “this” in the body of the page.

page
53 JavaServer Pages 1.1 Specification • November 30, 1999

ese
ment,
the

In addition, in an error page, you can access the exception implicit object, described in
TABLE 2-3.

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of upper and
lower case, are reserved by the JSP specification.

See Section 5.8.1 for some non-normative conventions for the introduction of new implicit
objects.

2.9 The pageContext Object
A PageContext provides an object that encapsulates implementation-dependent features
and provides convenience methods. A JSP page implementation class can use a
PageContext to run unmodified in any compliant JSP container while taking advantage of
implementation-specific improvements like high performance JspWriters. Generating such
an implementation is not a requirement of JSP 1.1 compliant containers, although providing
the pageContext implicit object is.

See Appendix 6 for more details.

2.10 Scripting Elements
The JSP 1.1 specification describes three scripting language elements—declarations,
scriptlets, and expressions. A scripting language precisely defines the semantics for th
elements but, informally, a declaration declares elements, a scriptlet is a statement frag
and an expression is a complete language expression. The scripting language used in
current page is given by the value of the language directive (see Section 2.7.1, “The page
Directive”). In JSP 1.1, the only value defined is “java” .

Each scripting element has a “<%”-based syntax as follows:

TABLE 2-3 Implicit Objects Available in Error Pages

Implicit Variable Of Type What It Represents scope

exception java.lang.Throwable The uncaught Throwable that
resulted in the error page being
invoked.

page
Chapter 2 Standard Syntax and Semantics 54

.

 in a
eof,

other

hile
<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

White space is optional after “<%!”, “<%”, and “<%=”, and before “%>”.

The equivalent XML elements for these scripting elements are described in Section 7.4

2.10.1 Declarations

Declarations are used to declare variables and methods in the scripting language used
JSP page. A declaration should be a complete declarative statement, or sequence ther
according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.

Declarations are initialized when the JSP page is initialized and are made available to
declarations, scriptlets, and expressions.

Examples

For example, the first declaration below declares an integer, and initializes it to zero; w
the second declaration declares a method.

<%! int i = 0; %>

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

Syntax
<%! declaration(s) %>

2.10.2 Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting language specified
in the language directive. Whether the code fragment is legal depends on the details of the
scripting language; see Chapter 4.

Scriptlets are executed at request-processing time. Whether or not they produce any output
into the out stream depends on the actual code in the scriptlet. Scriptlets can have side-
effects, modifying the objects visible in them.
55 JavaServer Pages 1.1 Specification • November 30, 1999

When all scriptlet fragments in a given translation unit are combined in the order they appear
in the JSP page, they shall yield a valid statement or sequence thereof, in the specified
scripting language.

If you want to use the %> character sequence as literal characters in a scriptlet, rather than to
end the scriptlet, you can escape them by typing %\>.

Examples

Here is a simple example where the page changed dynamically depending on the time of day.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning
<% } else { %>
Good Afternoon
<% } %>

Syntax
<% scriptlet %>

2.10.3 Expressions

An expression element in a JSP page is a scripting language expression that is evaluated and
the result is coerced to a String which is subsequently emitted into the current out
JspWriter object.

If the result of the expression cannot be coerced to a String then either a translation time
error shall occur, or, if the coercion cannot be detected during translation, a
ClassCastException shall be raised at request time.

A scripting language may support side-effects in expressions. If so, they take effect when the
expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If the
expressions appear in more than one run-time attribute, they are evaluated left-to-right in the
tag. An expression might change the value of the out object, although this is not something
to be done lightly.

The contents of an expression must be a complete expression in the scripting language in
which they are written.

Expressions are evaluated at HTTP processing time. The value of an expression is converted
to a String and inserted at the proper position in the .jsp file.
Chapter 2 Standard Syntax and Semantics 56

Examples

In the next example, the current date is inserted.

<%= (new java.util.Date()).toLocaleString() %>

Syntax
<%= expression %>

2.11 Actions
Actions may affect the current out stream and use, modify and/or create objects. Actions may,
and often will, depend on the details of the specific request object received by the JSP page.

The JSP specification includes some action types that are standard and must be implemented
by all conforming JSP containers. New action types are introduced using the taglib
directive.

The syntax for action elements is based on XML; the only transformation needed is due to
quoting conventions (see Section 7.5).

2.12 Tag Attribute Interpretation Semantics
Generally, all custom and standard action attributes and their values either remain
uninterpreted by, or have well defined action-type specific semantics known to, a conforming
JSP container. However there are two exceptions to this general rule: some attribute values
represent request-time attribute values and are processed by a conforming JSP container, and
the id and scope attributes have special interpretation.

2.12.1 Request Time Attribute Values

Action elements (both standard and custom) can define named attributes and associated
values. Typically a JSP page treats these values as fixed and immutable but the JSP 1.1
provides a mechanism to describe a value that is computed at request time.
57 JavaServer Pages 1.1 Specification • November 30, 1999

d.
uch

 an

value.
ach

 is
s

-time

r.

r with
e

g

sed in

An attribute value of the form ”<%= scriptlet_expr %>” or ‘<%= scriptlet_expr %>’ denotes
a request-time attribute value. The value denoted is that of the scriptlet expression involve
Request-time attribute values can only be used in actions. If there are more than one s
attribute in a tag, the expressions are evaluated left-to-right.

Only attribute values can be denoted this way (e.g. the name of the attribute is always
explicit name), and the expression must appear by itself (e.g. multiple expressions, and
mixing of expressions and string constants are not permitted; instead perform these
operations within the expression).

The resulting value of the expression depends upon the expected type of the attribute’s
The type of an action element indicates the valid Java programming languag type for e
attribute value; the default is java.lang.String.

By default, all attributes have page translation-time semantics. Attempting to specify a
scriptlet expression as a value for an attribute that has page translation time semantics
illegal, and will result in a fatal translation error. The type of an action element indicate
whether a given attribute will accept request-time attribute values.

Most attributes in the actions defined in the JSP 1.1 specification have page translation
semantics.

The following attributes accept request-time attribute expressions:

• The value and beanName attributes of jsp:setProperty (2.13.2).

• The page attribute of jsp:include (2.13.4).

• The page attribute of jsp:forward (2.13.5).

• The value attribute of jsp:param (2.13.6).

2.12.2 The id Attribute

The id=” name” attribute/value tuple in an element has special meaning to a JSP container,
both at page translation time, and at client request processing time; in particular:

• the name must be unique within the translation unit, and identifies the particular element
in which it appears to the JSP container and page.

 Duplicate id’s found in the same translation unit shall result in a fatal translation erro

• In addition, if the action type creates one or more object instance at client request
processing time, one of these objects will usually be associated by the JSP containe
the named value and can be accessed via that name in various contexts through th
pagecontext object described later in this specification.

 Furthermore, the name is also used to expose a variable (name) in the page’s scriptin
language environment. The scope of this scripting language dependent variable is
dependent upon the scoping rules and capabilities of the actual scripting language u
the page. Note that this implies that the name value syntax shall comply with the variable
naming syntax rules of the scripting language used in the page.
Chapter 2 Standard Syntax and Semantics 58

 Chapter 4 provides details for the case where the language attribute is ”java” .

For example, the <jsp:usebean id=” name” class=” className” .../> action
defined later herein uses this mechanism in order to, possibly instantiate, and subsequently
expose the named JavaBeans component to a page at client request processing time.

For example:

<% { // introduce a new block %>
...
<jsp:useBean id=”customer” class=”com.myco.Customer” />

<%
/*
 * the tag above creates or obtains the Customer Bean
 * reference, associates it with the name “customer” in the
 * PageContext, and declares a Java programming language
 * variable of the
 * same name initialized to the object reference in this
 * block’s scope.
 */
%>
...
<%= customer.getName(); %>
...

<% } // close the block %>

<%
// the variable customer is out of scope now but
// the object is still valid (and accessible via pageContext)
%>

2.12.3 The scope Attribute

The scope=”page|request|session|application” attribute/value tuple is
associated with, and modifies the behavior of the id attribute described above (it has both
translation time and client request processing time semantics). In particular it describes the
namespace, the implicit lifecycle of the object reference associated with the name, and the
APIs used to access this association, as follows:
59 JavaServer Pages 1.1 Specification • November 30, 1999

t

page The named object is available from the
javax.servlet.jsp.PageContext for the current page.

This reference shall be discarded upon completion of the current
request by the page body.

It is illegal to change the instance object associated, such that its
runtime type is a subset of the type of the current object previously
associated.

request The named object is available from the current page’s
ServletRequest object using the getAttribute(name)
method.

This reference shall be discarded upon completion of the current clien
request.

It is illegal to change the value of an instance object so associated,
such that its runtime type is a subset of the type(s) of the object
previously so associated.

session The named object is available from the current page’s HttpSession
object (which can in turn be obtained from the ServletRequest
object) using the getValue(name) method.

This reference shall be discarded upon invalidation of the current
session.

It is Illegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.

Note it is a fatal translation error to attempt to use session scope
when the JSP page so attempting has declared, via the <%@ page
... %> directive (see later) that it does not participate in a
session.

application The named object is available from the current page’s
ServletContext object using the getAttribute(name)
method.

This reference shall be discarded upon reclamation of the
ServletContext.

It is Illegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.
Chapter 2 Standard Syntax and Semantics 60

.b.c”,
be
cated
est-

d
2.13 Standard Actions
The JSP 1.1 specification defines some standard action types that are always available,
regardless of the version of the JSP container or Web server the developer uses. The standard
action types are in addition to any custom types specific to a given JSP container
implementation.

2.13.1 <jsp:useBean>

A jsp:useBean action associates an instance of a Java programming language object
defined within a given scope available with a given id via a newly declared scripting
variable of the same id.

The jsp:useBean action is quite flexible; its exact semantics depends on the attributes
given. The basic semantic tries to find an existing object using id and scope; if it is not
found it will attempt to create the object using the other attributes. It is also possible to use
this action only to give a local name to an object define elsewhere, as in another JSP page or
in a Servlet; this can be done by using the type attribute and not providing neither class
nor beanName attributes.

At least one of type and class must be present, and it is not valid to provide both class
and beanName. If type and class are present, class must be assignable (in the Java
platform sense) to type; failure to do so is a translation-time error.

The attribute beanName is the name of a Bean, as specified in the JavaBeans specification
for an argument to the instantiate() method in java.beans.Beans. I.e. it is of the form “a
which may be either a class, or the name of a resource of the form “a/b/c.ser” that will
resolved in the current ClassLoader. If this is not true, a request-time exception, as indi
in the semantics of instantiate() will be raised. The value of this attribute can be a requ
time attribute expression.

The actions performed are:

1. Attempt to locate an object based on the attribute values (id, scope). The inspection is
done appropriately synchronized per scope namespace to avoid non-deterministic
behavior.

2. Define a scripting language variable with the given id in the current lexical scope of the
scripting language of the specified type (if given) or class (if type is not given).

3. If the object is found, the variable’s value is initialized with a reference to the locate
object, cast to the specified type. If the cast fails, a
java.lang.ClassCastException shall occur. This completes the processing of
this useBean action.
61 JavaServer Pages 1.1 Specification • November 30, 1999

s
If the jsp:useBean element had a non-empty body it is ignored. This completes the
processing of this useBean action.

4. If the object is not found in the specified scope and neither class nor beanName are given,
a java.lang.InstantiationException shall occur. This completes the
processing of this useBean action.

5. If the object is not found in the specified scope; and the class specified names a non-
abstract class that defines a public no-args constructor, then that class is instantiated, and
the new object reference is associated the with the scripting variable and with the
specified name in the specified scope using the appropriate scope dependent association
mechanism (see PageContext). After this, step 7 is performed.

If the object is not found, and the class is either abstract, an interface, or no public
no-args constructor is defined therein, then a
java.lang.InstantiationException shall occur. This completes the processing
of this useBean action.

6. If the object is not found in the specified scope; and beanName is given, then the method
instantiate() of java.beans.Beans will be invoked with the ClassLoader of the
Servlet object and the beanName as arguments. If the method succeeds, the new object
reference is associated the with the scripting variable and with the specified name in the
specified scope using the appropriate scope dependent association mechanism (see
PageContext). After this, step 7 is performed.

7. If the jsp:useBean element has a non-empty body, the body is processed. The variable
is initialized and available within the scope of the body. The text of the body is treated as
elsewhere; if there is template text it will be passed through to the out stream; scriptlets
and action tags will be evaluated.

A common use of a non-empty body is to complete initializing the created instance; in
that case the body will likely contain jsp:setProperty actions and scriptlets. This
completes the processing of this useBean action.

Examples

In the following example, a Bean with name “connection” of type
“com.myco.myapp.Connection” is available after this element; either because it wa
already created or because it is newly created.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection” />

In this next example, the timeout property is set to 33 if the Bean was instantiated.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection”>
<jsp:setProperty name=”connection” property=”timeout” value=”33”>

</jsp:useBean>
Chapter 2 Standard Syntax and Semantics 62

s

-

In our final example, the object should have been present in the session. If so, it is given the
local name wombat with WombatType. A ClassCastException may be raised if the
object is of the wrong class, and an InstantiationException may be raised if the
object is not defined.

<jsp:useBean id=”wombat” type=”my.WombatType” scope=”session”/>

2.13.1.1 Syntax

This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id=" name" scope="page|request|session|application"
typeSpec />

typeSpec ::=class=” className” |
class=” className” type=” typeName” |
type=” typeName” class=” className” |
beanName=” beanName” type=” typeName” |
type=” typeName” beanName=” beanName” |
type=” typeName”

If the action has a body, it is of the form:

<jsp:useBean id=" name" scope="page|request|session|application"
typeSpec >

body
</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is created. Typically,
the body will contain either scriptlets or jsp:setProperty tags that will be used to
modify the newly created object, but the contents of the body is not restricted.

The <jsp:useBean> tag has the following attributes:

id The name used to identify the object instance in the specified scope’
namespace, and also the scripting variable name declared and
initialized with that object reference. The name specified is case
sensitive and shall conform to the current scripting language variable
naming conventions.

scope The scope within which the reference is available. The default value is
page. See the description of the scope attribute defined earlier herein
63 JavaServer Pages 1.1 Specification • November 30, 1999

2.13.2 <jsp:setProperty>

The jsp:setProperty action sets the value of properties in a Bean. The name attribute
denotes an object that must be defined before this action appears.

There are two variants of the jsp:setProperty action. Both variants set the values of one or
more properties in the Bean based on the type of the properties. The usual Bean introspection
is done to discover what properties are present, and, for each, its name, whether they are
simple or indexed, their type, and setter and getter methods.

Properties in a Bean can be set from one or more parameters in the request object, from a
String constant, or from a computed request-time expression. Simple and indexed properties
can be set using setProperty. The only types of properties that can be assigned to from String
constants and request parameter values are those listed in TABLE 2-4; the conversion applied
is that shown in the table. Request-time expressions can be assigned to properties of any
type; no automatic conversions will be performed.

When assigning values to indexed properties the value must be an array; the rules described
in the previous paragraph apply to the elements.

class The fully qualified name of the class that defines the implementation of
the object. The class name is case sensitive.

If the class and beanName attributes are not specified the object must
be present in the given scope.

beanName The name of a Bean, as expected by the instantiate() method of the
java.beans.Beans class.

This attribute can accept a request-time attribute expression as a value.

type If specified, it defines the type of the scripting variable defined.

This allows the type of the scripting variable to be distinct from, but
related to, that of the implementation class specified.

The type is required to be either the class itself, a superclass of the
class, or an interface implemented by the class specified.

The object referenced is required to be of this type, otherwise a
java.lang.ClassCastException shall occur at request time
when the assignment of the object referenced to the scripting variable
is attempted.

If unspecified, the value is the same as the value of the class
attribute.
Chapter 2 Standard Syntax and Semantics 64

A conversion failure leads to an error; the error may be at translation or at request-time.

Examples

The following two elements set a value from the request parameter values.

<jsp:setProperty name=”request” property=”*” />
<jsp:setProperty name=”user” property=”user” param=”username” />

The following element sets a property from a value

<jsp:setProperty name=”results” property=”row” value=”<%= i+1 %>” />

2.13.2.1 Syntax
<jsp:setProperty name=" beanName" prop_expr />

prop_expr ::= property="*" |
property=” propertyName”|
property=” propertyName” param=" parameterName"|
property=” propertyName” value=” propertyValue”

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as described in Section 2.12.1,
“Request Time Attribute Values”.

propertyValue ::= expr_scriptlet1

TABLE 2-4 Valid assignments in jsp:setProperty

Property Type Conversion on String Value

boolean or Boolean As indicated in java.lang.Boolean.valueOf(String)

byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.Character.valueOf(String)1

1. This needs to be clarified before final, since the conversion is dependent on a character encoding.

double or Double As indicated in java.lang.Double.valueOf(String)

int or Integer As indicated in java.lang.Integer.valueOf(String)

float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)

1. See syntax for expression scriptlet “<%= ... %>”
65 JavaServer Pages 1.1 Specification • November 30, 1999

e.
The <jsp:setProperty> element has the following attributes:

2.13.3 <jsp:getProperty>

An <jsp:getProperty> action places the value of a Bean instance property, converted to
a String, into the implicit out object, from which you can display the value as output. The
Bean instance must be defined as indicated in the name attribute before this point in the page
(usually via a useBean action).

The conversion to String is done as in the println() methods, i.e. the toString() method
of the object is used for Object instances, and the primitive types are converted directly.

If the object is not found, a request-time exception is raised.

name The name of a Bean instance defined by a <jsp:useBean> element or
some other element. The Bean instance must contain the property you
want to set. The defining element (in JSP 1.1 only a <jsp:useBean>
element) must appear before the <jsp:setProperty> element in the
same file.

property The name of the Bean property whose value you want to set

If you set propertyName to * then the tag will iterate over the
current ServletRequest parameters, matching parameter names
and value type(s) to property names and setter method type(s), setting
each matched property to the value of the matching parameter. If a
parameter has a value of ““, the corresponding property is not
modified.

param The name of the request parameter whose value you want to give to a
Bean property. The name of the request parameter usually comes from a
Web form

If you omit param, the request parameter name is assumed to be the
same as the Bean property name

If the param is not set in the Request object, or if it has the value of ““,
the jsp:setProperty element has no effect (a noop).

An action may not have both param and value attributes.

value The value to assign to the given property.

This attribute can accept a request-time attribute expression as a valu

An action may not have both param and value attributes.
Chapter 2 Standard Syntax and Semantics 66

Examples

<jsp:getProperty name=”user” property=”name” />

2.13.3.1 Syntax
<jsp:getProperty name=” name” property=” propertyName” />

The attributes are:

2.13.4 <jsp:include>

A <jsp:include .../> element provides for the inclusion of static and dynamic
resources in the same context as the current page. See TABLE 2-1 for a summary of include
facilities.

The resource is specified using a relativeURLspec that is interpreted in the context of the
Web server (i.e. it is mapped). See Section 2.5.2.

An included page only has access to the JspWriter object and it cannot set headers. This
precludes invoking methods like setCookie(). A request-time Exception will be raised if
this constraint is not satisfied. The constraint is equivalent to the one imposed on the
include() method of the RequestDispatcher class.

A jsp:include action may have jsp:param subelements that can provide values for
some parameters in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once the inclusion is completed.

If the page output is buffered then the buffer is flushed prior to the inclusion. See Section B.4
for an implementation note. See Section 5.4.5 for limitations on flushing when out is not
the top-level JspWriter.

Examples

<jsp:include page=”/templates/copyright.html”/>

name The name of the object instance from which the property is obtained.

property Names the property to get.
67 JavaServer Pages 1.1 Specification • November 30, 1999

2.13.4.1 Syntax
<jsp:include page=” urlSpec” flush="true"/>

and

<jsp:include page=” urlSpec” flush="true">
{ <jsp:param /> }*

</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the values in the
param subelements are used to augment the request for the purposes of the inclusion.

The valid attributes are:

2.13.5 <jsp:forward>

A <jsp:forward page=”urlSpec ” /> element allows the runtime dispatch of the
current request to a static resource, a JSP pages or a Java Servlet class in the same context as
the current page. A jsp:forward effectively terminates the execution of the current page. The
relative urlSpec is as in Section 2.5.2.

The request object will be adjusted according to the value of the page attribute.

A jsp:forward action may have jsp:param subelements that can provide values for
some parameters in the request to be used for the forwarding.

If the page output is buffered then the buffer is cleared prior to forwarding.

If the page output was unbuffered and anything has been written to it, an attempt to forward
the request will result in an IllegalStateException.

Examples

The following element might be used to forward to a static page based on some dynamic
condition.

<% String whereTo = “/templates/”+someValue; %>
<jsp:forward page=’<%= whereTo %>’ />

page The URL is a relative urlSpec is as in Section 2.5.2.

Accepts a request-time attribute value (which must evaluate to a String
that is a relative URL specification).

flush Mandatory boolean attribute. If the value is “true”, the buffer is
flushed. A “false” value is not valid in JSP 1.1.
Chapter 2 Standard Syntax and Semantics 68

2.13.5.1 Syntax
<jsp:forward page=” relativeURLspec” />

and

<jsp:forward page=” urlSpec”>
{ <jsp:param /> }*

</jsp:forward>

This tag allows the page author to cause the current request processing to be effected by the
specified attributes as follows:

2.13.6 <jsp:param>

The jsp:param element is used to provide key/value information. This element is used in
the jsp:include, jsp:forward and jsp:plugin elements.

When doing jsp:include or jsp:forward, the included page or forwarded page will
see the original request object, with the original parameters augmented with the new
parameters, with new values taking precedence over existing values when applicable. The
scope of the new parameters is the jsp:include or jsp:forward call; i.e. in the case of an
jsp:include the new parameters (and values) will not apply after the include. This is the
same behavior as in the ServletRequest include and forward methods (see Section
8.1.1 in the Servlet 2.2 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is specified for
forward, the forwarded request shall have A=bar,foo. Note that the new param has
precedence.

2.13.6.1 Syntax
<jsp:param name="name" value="value" />

This action has two mandatory attributes: name and value. Name indicates the name of the
parameter, value, which may be a request-time expression, indicates its value.

page The URL is a relative urlSpec is as in Section 2.5.2.

Accepts a request-time attribute value (which must evaluate to a String
that is a relative URL specification).
69 JavaServer Pages 1.1 Specification • November 30, 1999

2.13.7 <jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains the appropriate
client browser dependent constructs (OBJECT or EMBED) that will result in the download
of the Java Plugin software (if required) and subsequent execution of the Applet or
JavaBeans component specified therein.

The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the response.
The attributes of the <jsp:plugin> tag provide configuration data for the presentation of
the element, as indicated in the table below.

The <jsp:param> elements indicate the parameters to the Applet or JavaBeans
component.

The <jsp:fallback> element indicates the content to be used by the client browser if the
plugin cannot be started (either because OBJECT or EMBED is not supported by the client
browser or due to some other problem). If the plugin can start but the Applet or JavaBeans
component cannot be found or started, a plugin specific message will be presented to the
user, most likely a popup window reporting a ClassNotFoundException

Examples
<jsp:plugin type=applet code=”Molecule.class” codebase=”/html” >

<jsp:params>
<jsp:param

name=”molecule”
value=”molecules/benzene.mol”/>

</jsp:params>
<jsp:fallback>
 <p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>

2.13.7.1 Syntax
<jsp:plugintype="bean|applet"

code=" objectCode"
codebase=" objectCodebase"
{ align=" alignment" }
{ archive=" archiveList" }
{ height=" height" }
{ hspace=" hspace" }
{ jreversion=" jreversion" }
{ name=" componentName" }
{ vspace=" vspace" }
Chapter 2 Standard Syntax and Semantics 70

{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" } >

{ <jsp:params>
{ <jsp:param name="paramName" value=” paramValue" /> }+

 </jsp:params> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }

</jsp:plugin>

type Identifies the type of the component; a Bean, or an Applet.

code As defined by HTML spec

codebase As defined by HTML spec

align As defined by HTML spec

archive As defined by HTML spec

height As defined by HTML spec

hspace As defined by HTML spec

jreversion Identifies the spec version number of the JRE the component requires
in order to operate; the default is: “1.1”

name As defined by HTML spec

vspace As defined by HTML spec

title As defined by the HTML spec

width As defined by HTML spec

nspluginurl URL where JRE plugin can be downloaded for Netscape Navigator,
default is implementation defined.

iepluginurl URL where JRE plugin can be downloaded for IE, default is
implementation defined.
71 JavaServer Pages 1.1 Specification • November 30, 1999

 so they

d by a
The
P page
e

 how

class
e
ervlet

ts to it.
CHAPTER 3

The JSP Container

This chapter provides details on the contracts between a JSP container and a JSP page.

This chapter is independent on the Scripting Language used in the JSP page. Chapter 4
provides the details specific to when the language directive has “java” as its value.

This chapter also presents the precompilation protocol (see Section 3.4).

JSP page implementation classes should use the JspFactory and PageContext classes
will take advantage of platform-specific implementations.

3.1 The JSP Page Model
As indicated in Section 1.4, “Overview of JSP Page Semantics”, a JSP page is execute
JSP container, which is installed on a Web Server or Web enabled Application Server.
JSP container delivers requests from a client to a JSP page and responses from the JS
to the client. The semantic model underlying JSP pages is that of a Servlet: a JSP pag
describes how to create a response object from a request object for a given protocol, possibly
creating and/or using in the process some other objects. A JSP page may also indicate
some events (in JSP 1.1 only init and destroy events) are to be handled.

The Protocol Seen by the Web Server

The entity that processes request objects creating response objects should behave as if it were
a Java technology-based class; in this specification we will simply assume it is so. This
must implement the Servlet protocol. It is the role of the JSP container to first locate th
appropriate instance of such a class and then to deliver requests to it according to the S
protocol. As indicated elsewhere, a JSP container may need to create such a class
dynamically from the JSP page source before delivering a request and response objec
 The JSP Container 72

Thus, Servlet defines the contract between the JSP container and the JSP page
implementation class. When the HTTP protocol is used, the contract is described by the
HttpServlet class. Most pages use the HTTP protocol, but other protocols are allowed by this
specification.

The Protocol Seen by the JSP Page Author

The JSP specification also defines the contract between the JSP container and the JSP page
author. This is, what assumptions can an author make for the actions described in the JSP
page.

The main portion of this contract is the _jspService() method that is generated automatically
by the JSP container from the JSP page. The details of this contract is provided in Chapter 4.

The contract also describes how a JSP author can indicate that some actions must be taken
when the init() and destroy() methods of the page implementation occur. In JSP 1.1 this is
done by defining methods with name jspInit() and jspDestroy() in a declaration scripting
element in the JSP page. Before the first time a request is delivered to a JSP page a jspInit()
method, if present, will be called to prepare the page. Similarly, a JSP container can reclaim
the resources used by a JSP page at any time that a request is not being serviced by the JSP
page by invoking first its jspDestroy() method, if present.

A JSP page author may not (re)define any of the Servlet methods through a declaration
scripting element.

The JSP specification reserves the semantics of methods and variables starting with jsp, _jsp,
jspx and _jspx, in any combination of upper and lower case.

The HttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page author is aided
by requiring that the Servlet class corresponding to the JSP page must implement the
HttpJspPage interface (or the JspPage interface if the protocol is not HTTP).
73 JavaServer Pages 1.1 Specification • November 30, 1999

FIGURE 3-1 Contracts between a JSP Page and a JSP Container.

The involved contracts are shown in FIGURE 3-1. We now revisit this whole process in more
detail.

3.2 JSP Page Implementation Class
The JSP container creates a JSP page implementation class for each JSP page. The name of
the JSP page implementation class is implementation dependent.

The creation of the implementation class for a JSP page may be done solely by the JSP
container, or it may involve a superclass provided by the JSP page author through the use of
the extends attribute in the jsp directive. The extends mechanism is available for
sophisticated users and it should be used with extreme care as it restricts what some of the
decisions that a JSP container can take, e.g. to improve performance.

The JSP page implementation class will implement Servlet and the Servlet protocol
will be used to deliver requests to the class.

JSP Container JSP Page

jspInit

jspDestroy

_jspService

init event

destroy event

request

response

<%!
public void jspInit()...

public void jspDestroy()...
%>
<html>
This is the response..
</html>

REQUEST PROCESSING TRANSLATION PHASE
PHASE
Chapter 3 The JSP Container 74

A JSP page implementation class may depend on some support classes; if it does, and the
JSP page implementation class is packaged into a WAR, those classes will have to be
included in the packaged WAR so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server will
communicate using a certain protocol. The JSP container must then guarantee that requests
from and responses to the page use that protocol. Most JSP pages use HTTP, and their
implementation classes must implement the HttpJspPage interface, which extends
JspPage. If the protocol is not HTTP, then the class will implement an interface that
extends JspPage.

3.2.1 API Contracts

The contract between the JSP container and a Java class implementing a JSP page
corresponds to the Servlet interface; refer to the Servlet specification for details.

The contract between the JSP container and the JSP page author is described in TABLE 3-1.
The responsibility for adhering to this contract rests only on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp directive;
otherwise, the JSP page author guarantees that the superclass given in the extends attribute
supports this contract.

TABLE 3-1 How the JSP Container Processes JSP Pages

Comments Methods the JSP Container Invokes

Method is optionally defined in JSP page.
Method is invoked when the JSP page is
initialized.
When method is called all the methods in
servlet, including getServletConfig() are
available

void jspInit()

Method is optionally defined in JSP page.
Method is invoked before destroying the
page.

void jspDestroy()

Method may not be defined in JSP page.
The JSP container automatically
generates this method, based on the
contents of the JSP page.
Method invoked at each client request.

void _jspService(<ServletRequestSubtype>,
<ServletResponseSubtype>) throws
IOException, ServletException
75 JavaServer Pages 1.1 Specification • November 30, 1999

atisfies

ot
3.2.2 Request and Response Parameters

As shown in TABLE 3-1, the methods in the contract between the JSP container and the JSP
page require request and response parameters.

The formal type of the request parameter (which this specification calls
<ServletRequestSubtype>) is an interface that extends
javax.servlet.ServletRequest. The interface must define a protocol-dependent
request contract between the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification calls
<ServletResponseSubtype>) is an interface that extends
javax.servlet.ServletResponse. The interface must define a protocol-dependent
response contract between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent contract between
the JSP container and the class that implements the JSP page. The contract for HTTP is
defined by the javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe syntactically the
methods involving the Servlet(Request,Response) subtypes. However, interfaces for
specific protocols that extend JspPage can, just as HttpJspPage describes them for the
HTTP protocol.

Note – JSP containers that conform to this specification (in both JSP page
implementation classes and JSP container runtime) must implement the request and
response interfaces for the HTTP protocol as described in this section.

3.2.3 Omitting the extends Attribute

If the extends attribute of the language directive (see Section 2.7.1, “The page
Directive”) in a JSP page is not used, the JSP container can generate any class that s
the contract described in TABLE 3-1 when it transforms the JSP page.

In the following code examples, CODE EXAMPLE 3-1 illustrates a generic HTTP superclass
named ExampleHttpSuper. CODE EXAMPLE 3-2 shows a subclass named _jsp1344 that
extends ExampleHttpSuper and is the class generated from the JSP page. By using
separate _jsp1344 and ExampleHttpSuper classes, the JSP page translator needs n
discover if the JSP page includes a declaration with jspInit() or jspDestroy(); this
simplifies very significantly the implementation.
Chapter 3 The JSP Container 76

CODE EXAMPLE 3-1 A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a superclass for an HTTP JSP class
*/

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jspInit();

}

final public ServletConfig getServletConfig() {
return config;

}

// This one is not final so it can be overridden by a more precise method
public String getServletInfo() {

return “A Superclass for an HTTP JSP”; // maybe better?
}

final public void destroy() {
jspDestroy();

}

/**
* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

// casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, resonse);

/**
* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

77 JavaServer Pages 1.1 Specification • November 30, 1999

CODE EXAMPLE 3-2 The Java Class Generated From a JSP Page
imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a class generated for a JSP.
*
* The name of the class is unpredictable.
* We are assuming that this is an HTTP JSP page (like almost all are)
*/

class _jsp1344 extends ExampleHttpSuper {

// Next code inserted directly via declarations.
// Any of the following pieces may or not be present
// if they are not defined here the superclass methods
// will be used.

public void jspInit() {....}
public void jspDestroy() {....}

// The next method is generated automatically by the
// JSP processor.
// body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// initialization of the implicit variables

HttpSession session = request.getSession();
ServletContext context =

getServletConfig().getServletContext();

// for this example, we assume a buffered directive

JSPBufferedWriter out = new
JSPBufferedWriter(response.getWriter());

// next is code from scriptlets, expressions, and static text.

}

}

Chapter 3 The JSP Container 78

3.2.4 Using the extends Attribute

If the JSP page author uses extends, the generated class is identical to the one shown in
CODE EXAMPLE 3-2, except that the class name is the one specified in the extends attribute.

The contract on the JSP page implementation class does not change. The JSP container
should check (usually through reflection) that the provided superclass:

• Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

• All of the methods in the Servlet interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided superclass
satisfies:

• The service() method of the Servlet API invokes the _jspService() method.

• The init(ServletConfig) method stores the configuration, makes it available as
getServletConfig, then invokes jspInit.

• The destroy method invokes jspDestroy.

A JSP container may give a fatal translation error if it detects that the provided superclass
does not satisfy these requirements, but most JSP containers will not check them.

3.3 Buffering
The JSP container buffers data (if the jsp directive specifies it using the buffer attribute) as it
is sent from the server to the client. Headers are not sent to the client until the first flush
method is invoked. Therefore, none of the operations that rely on headers, such as the
setContentType, redirect, or error methods are valid until the flush method is
executed and the headers are sent.

JSP 1.1 includes a class that buffers and sends output,
javax.servlet.jsp.JspWriter. The JspWriter class is used in the
_jspPageService method as in the following example:

import javax.servlet.jsp.JspWriter;

static JspFactory _jspFactory = JspFactory.getDefaultFactory();

_jspService(<SRequest> request, <SResponse> response) {

// initialization of implicit variables...

PageContext pageContext = _jspFactory.createPageContext(
this,
request,
79 JavaServer Pages 1.1 Specification • November 30, 1999

response,
false,
PageContext.DEFAULT_BUFFER,
false

);
JSPWriter out = pageContext.getOut();
//
// the body goes here using "out"
//
out.flush();

}

You can find the complete listing of javax.servlet.jsp.JspWriter in Chapter 6.

With buffering turned on, you can still use a redirect method in a scriptlet in a .jsp file, by
invoking response.redirect(someURL) directly.

3.4 Precompilation
A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 1.1 compliant
containers must support a simple precompilation protocol, as well as some basic reserved
parameter names. Note that the precompilation protocol should not be confused with the
notion of compiling a JSP page into a Servlet class (Appendix C).

3.4.1 Request Parameter Names

All request parameter names that start with the prefix "jsp" are reserved by the JSP
specification and should not be used by any user or implementation except as indicated by
the specification.

All JSPs pages should ignore (not depend on) any parameter that starts with "jsp_"

3.4.2 Precompilation Protocol

A request to a JSP page that has a request parameter with name "jsp_precompile" is a
precompilation request. The "jsp_precompile" parameter may have no value, or may have
values "true" or "false". In all cases, the request should not be delivered to the JSP page.
Chapter 3 The JSP Container 80

The intention of the precompilation request is that of a hint to the JSP container to
precompile the JSP page into its JSP page implementation class. The hint is conveyed by
given the parameter the value "true" or no value, but note that the request can be just ignored
in all cases.

For example:

1. ?jsp_precompile

2. ?jsp_precompile="true"

3. ?jsp_precompile="false"

4. ?foobar="foobaz"&jsp_precompile="true"

5. ?foobar="foobaz"&jsp_precompile="false"

1, 2 and 4 are legal; the request will not be delivered to the page. 3 and 5 are legal; the
request will be delivered to the page with no changes.

6. ?jsp_precompile="foo"

This is illegal and will generate an HTTP error; 500 (Server error).
81 JavaServer Pages 1.1 Specification • November 30, 1999

s
e, or

ng

lass;
n class

e used
t

ss
s

t are
CHAPTER 4

Scripting

This chapter describes the details of the Scripting Elements when the language directive
value is “java”. The scripting language is based on the Java programming language (a
specified by “The Java Language Specification”), but note that there is no valid JSP pag
a subset of a page, that is a valid Java program.

The details of the relationship between the scripting declarations, scriptlets, and scripti
expressions and the Java programming language is explained in detail in the following
sections. The description is in terms of the structure of the JSP page implementation c
recall that a JSP container need not necessarily generate the JSP page implementatio
but it must behave as if one existed.

4.1 Overall Structure
Some details of what makes a JSP page legal are very specific to the scripting languag
in the page. This is especially complex since scriptlets are just language fragments, no
complete language statements.

Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementation cla
defined by TABLE 4-1 (after applying all include directives), together with any other classe
defined by the JSP container, is a valid program for the given Java Platform.

Sun Microsystems reserves all names of the form {_}jsp_* and {_}jspx_*, in any
combination of upper and lower case, for the JSP specification. Names of this form tha
not defined in this specification are reserved by Sun for future expansion.
 Scripting 82

Implementation Flexibility

The transformations described in this Chapter need not be performed literally; an
implementation may want to implement things differently to provide better performance,
lower memory footprint, or other implementation attributes.

TABLE 4-1 Structure of the JavaProgramming Language Class

Optional imports clause as
indicated via jsp directive

import name1

SuperClass is either
selected by the JSP
container or by the JSP
author via jsp directive.

Name of class (_jspXXX)
is implementation
dependent.

class _jspXXX extends SuperClass

Start of body of JSP page
implementation class

{

(1) Declaration Section // declarations ...

signature for generated
method

public void _jspService(<ServletRequestSubtype> request,
<ServletResponseSubtype> response)
throws ServletException, IOException {

(2) Implicit Objects Section // code that defines and initializes request, response, page,
pageContext etc.

(3) Main Section // code that defines request/response mapping

close of _jspService
method

}

close of _jspXXX }
83 JavaServer Pages 1.1 Specification • November 30, 1999

t body
e is
lation

m

f the

ion,

orm:
4.2 Declarations Section
The declarations section correspond to the declaration elements.

The contents of this section is determined by concatenating all the declarations in the page in
the order in which they appear.

4.3 Initialization Section
This section defines and initializes the implicit objects available to the JSP page. See
Section 2.8, “Implicit Objects”.

4.4 Main Section
This section provides the main mapping between a request and a response object.

The contents of code segment 2 is determined from scriptlets, expressions, and the tex
of the JSP page. These elements are processed sequentially; a translation for each on
determined as indicated below, and its translation is inserted into this section. The trans
depends on the element type:

1. Template data is transformed into code that will place the template data into the strea
currently named by the implicit variable out. All white space is preserved.

Ignoring quotation issues and performance issues, this corresponds to a statement o
form:

out.print(template);

2. A scriptlet is transformed into its Java statement fragment.

3. An expression is transformed into a Java statement to insert the value of the express
converted to java.lang.String if needed, into the stream currently named by the
implicit variable out. No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of the f

out.print(expression);
Chapter 4 Scripting 84

4. An action defining one or more objects is transformed into one or more variable
declarations for these objects, together with code that initializes these variables. The
visibility of these variables is affected by other constructs, like the scriptlets.

The semantics of the action type determines the name of the variables (usually that of the
id attribute, if present) and their type. The only standard action in the JSP 1.1
specification that defines objects is the jsp:usebean action; the name of the variable
introduced is that of the id attribute, its type is that of the class attribute.

Note that the value of the scope attribute does not affect the visibility of the variables
within the generated program, it only affects where (and thus for how long) there will be
additional references to the object denoted by the variable.
85 JavaServer Pages 1.1 Specification • November 30, 1999

CHAPTER 5

Tag Extensions

This chapter describes the mechanisms for defining new actions in portable way and for
introducing new actions into a JSP page.

5.1 Introduction
A Tag Library abstracts some functionality by defining a specialized (sub)language that
enables a more natural use of that functionality within JSP pages. The actions introduced by
the Tag Library can be used by the JSP page author in JSP pages explicitly, when authoring
the page manually, or implicitly, when using an authoring tool. Tag Libraries are particularly
useful to authoring tools because they make intent explicit and the parameters expressed in
the action instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using the taglib
directive, and can then be used in the page using the prefix given by the directive. An action
can create new objects that can then be passed to other actions or can be manipulated
programmatically through an scripting element in the JSP page.

Tag libraries are portable: they can be used in any legal JSP page regardless of the scripting
language used in that page.

The tag extension mechanism includes information to:

• Execute a JSP page that uses the tag library.

• Author and modify a JSP page.

• Present the JSP page to the end user.

The JSP 1.1 specification mostly includes the first kind of information, plus basic
information of the other two kinds. Later releases of the JSP specification may provide
additional information; in the meanwhile, vendors may use vendor-specific information to
address their needs.
 Tag Extensions 86

A Tab Library is described via a Tag Library Descriptor, an XML document that is described
further below.

No custom directives can be described using the JSP 1.1 specification.

5.1.1 Goals

The tag extension mechanism described in this chapter addresses the following goals:

Portable - An action described in a tag library must be usable in any JSP container.

Simple - Unsophisticated users must be able to understand and use this mechanism. We
would like to make it very easy for vendors of functionality to expose it through actions.

Expressive - We want to enable a wide range of actions to be described in this mechanism,
including:

• Nested actions.
• Scripting elements inside the body.
• Creation, use and updating of scripting variables.

Usable from different scripting languages - Although the JSP specification currently only
defines the semantics for scripting based on the Java programming language, we want to
leave open other scripting languages.

Building upon existing concepts and machinery- We do not want to reinvent machinery that
exists elsewhere. Also, we want to avoid future conflicts whenever we can predict them.

5.1.2 Overview

The basic mechanism for defining the semantics of an action is that of a tag handler. A tag
handler is a Java class that implements the Tag or BodyTag interfaces and that is the run-
time representation of a custom action.

The JSP page implementation class instantiates (or reuses) a tag handler object for each
action in the JSP page. This handler object is a Java object that implements the
javax.servlet.jsp.tagext.Tag interface. The handler object is responsible for the
interaction between the JSP page and additional server-side objects.

There are two main interfaces: Tag and BodyTag.

• Tag defines the basic methods that are needed in all tag handlers. These methods include
setter methods to initialize a tag handler with context data and with the attribute values of
the corresponding action, and the two methods: doStartTag() and doEndTag().

• BodyTag provides two additional methods for when the tag handler wants to manipulate
its body. The two new methods are doInitBody() and doAfterBody().
87 JavaServer Pages 1.1 Specification • November 30, 1999

age;

g

n the
is
 to

s and

 This

 body,

s as

ll.

 to it
The use of interfaces simplifies taking an existing Java object and making it a tag handler.
There are also two support classes that can be used as base classes: TagSupport and
BodyTagSupport.

Simple Actions

In many cases, the tag handler only needs to use the tag handler’s method doStartTag()
which is invoked when the start tag is encountered. This method needs to access the
attributes of the tag and may also want to access information on the state of the JSP p
this information is passed to the Tag object before the call to doStartTag() through
several setter method calls.

The doEndTag() is similar to doStartTag(), except that it is invoked when the end ta
of the action is encountered. The result of the doEndTag invocation indicates whether the
remaining of the page is to be evaluated or not.

A particularly simple and frequent action is one that has an empty body (no text betwee
start and the end tag). The Tag Library Descriptor can be used to indicate that the tag
always intended to be empty; this leads to better error checking at translation time and
better code quality in the JSP page implementation class.

Actions with Body

Recall that in general, the body of an action may contain other custom and core action
scripting elements, as well as uninterpreted template text.

In some cases, an action is only interested in “passing through” the content of the body.
can be done using the simple Tag interface by using a special return value in
doStartTag().

If an action element can have a non-empty body and is interested in the content of that
the methods doInitBody() and doAfterBody(), defined in the BodyTag interface are
involved.

The control of the evaluation is actually done based on the result of method invocation
follows. The doStartTag() method is always invoked first and returns an int value that
indicates if the body of the action should be evaluated or not. If so (EVAL_BODY_TAG
return), a nested stream of type BodyContent is created and it is passed to the BodyTag
object through setBodyContent. Then doInitBody is invoked. Next the body is
evaluated, with the result going into the newly created BodyContent object. Finally the
doAfterBody() method of the tag handler object is invoked.

If the invocation to doStartTag() returned SKIP_BODY, the body is not evaluated at a

The doBody() methods may use the BodyContent object as it sees fit. For example, it
may convert it into a String and use it as an argument. Or it may do some filter action
before passing it through to the out stream. Or something else.
Chapter 5 Tag Extensions 88

. See
A doAfterBody() invocation returns an indication of whether further reevaluations of the
body text should be done by the JSP page; as in the case of doStartTag(), if
EVAL_BODY_TAG is returned, the body is reevaluated, while a return value of
SKIP_BODY will stop reevaluations. Note that, since server-side objects (accessible via
pageContext, or through nested handlers) may have changed, each evaluation may produce
very different content to be added to the BodyContent object.

Cooperating Actions

Often the best way to describe some functionality is through several cooperating actions. For
example, an action may be used to describe information that leads to the creation of some
server-side object, while another action may use that object elsewhere in the page. One way
for these actions to cooperate is explicitly, via using scripting variables: one action creates an
object and gives it a name, the other refers to it through this name. Scripting variables are
discussed briefly below.

Two actions can also cooperate implicitly using different conventions. For example, perhaps
the last action applies, or perhaps there is only one action of a given type per JSP page. A
more flexible and very convenient mechanism for action cooperation is using the nesting
structure to describe scoping. Each tag handler is told of its parent tag handler (if any) using
a setter method; the findAncestorWithClass static method in TagSupport can then
be used to locate a tag handler with some given properties.

Actions Defining Scripting Variables

A custom action may create some server-side objects and make them available to the
scripting elements by creating or updating some scripting variables. The specific variables
thus effected may vary with the action instance. The details of this are described through
subclasses of javax.servlet.jsp.tagext.TagExtraInfo which are used at JSP
page translation time. The TagExtraInfo class provides methods that will indicate what
are the names and types of the scripting variables that will be assigned objects (at request
time) by the action. These methods are passed a TagData instance that describes the
attributes of a given action. The responsibility of the tag library author is to faithfully
indicate this information in the TagExtraInfo class; the corresponding Tag object must add
the objects to the pageContext object. It is the responsibility of the JSP page translator to
automatically supply all the required code to do the “synchronization” between the
pageObject values and the scripting variables.

5.1.3 Examples

This section outlines some simple, and common, uses of the tag extension mechanism
Appendix A for more details on these examples and for additional examples of custom
actions.
89 JavaServer Pages 1.1 Specification • November 30, 1999

 this

nfo by
e, the

t of
t can
d can
5.1.3.1 Call Functionality, no Body

This is probably the simplest example: just collect attributes and call into some action. The
only action involved is foo, and in this case it should have no body. I.e something like:

<x:foo att1="..." att2="..." att3="..." />

In this case we would define a FooTag tag handler that extends TagSupport only
redefining doStartTag. The doStartTag method would take the attribute information,
perhaps interact with the PageContext data and invoke into the appropriate functionality.

The entry for this tag in the Tag Library Descriptor should indicate that the action must have
no body; no TagExtraInfo class is needed.

5.1.3.2 Call Functionality, No Body, Define Object

In a simple variation of the previous example the action defines an object.

<x:bar id=”mybar” att1=”...” att2=”...” att3=”...” />

After this, an object with name mybar is available to the scripting language.

The semantics of doStartTag() invocation is as before except that additionally it should
insert the appropriate object for the “mybar” entry into the pageContext.

The Tag Library Descriptor entry for this action needs to mention a TagExtraInfo class
that will be used to determine the scripting variables that will be created by the action; in
case “mybar” (note that id must be a translation-time attribute).

5.1.3.3 Call Functionality, Define Object by Scope

In some cases, the previous example can also be described without using a TagExtraI
having the bar action enclose the actions that would use the created object. In this cas
defining action needs not indicate any id attribute but it must have a body:

<x:bar att1=”...” att2=”...” att3=”...”>
 BODY
</x:bar>

The nesting actions will invoke findAncestorWithClass to locate the bar handler
object.

5.1.3.4 Template Mechanisms

There are a number of “template” mechanisms in server-side frameworks. The simples
these mechanisms will take a “token” and replace it by some fixed replacement text (tha
be changed easily); more sophisticated mechanisms compute the replacement text, an
Chapter 5 Tag Extensions 90

pass arguments for that computation. These mechanisms can be subsumed directly into an
empty-bodied action invocation, perhaps using attributes to describe the template and/or the
arguments for the computation.

5.1.3.5 An HTML quoting action

The final example is an action that takes its body and performs HTML quoting. In this case,
the doStartTag() method will save away the value of the out implicit object and request
the evaluation of the body. The doAfterBody() method will take the nested stream,
perform the quoting, and send it down to the saved out stream.

5.1.3.6 A useBean as in the JSP 0.92 specification

The 0.92 public draft of the JSP specification included a version of a useBean action with
a variation: if the Bean created included a processRequest(ServletRequest)
method then the method would be invoked. Observant readers will notice that a
processRequest() is a special case of a doStartTag() as the request object is one of
the objects available in pageContext.

5.2 Tag Library
A Tag Library is a collection of actions that encapsulate some functionality to be used from within
a JSP page. A Tag library is made available to a JSP page via a taglib directive that identifies
the Tag Library via a URI (Universal Resource Identifier).

The URI identifying a tag library may be any valid URI as long as it can be used to uniquely
identify the semantics of the tag library. A common mechanism is to encoding the version of
a tag library into its URI.

The URI identifying the tag library is associated with a Tag Library Description (TLD) file
and with tag handler classes as indicated in Section 5.3 below.

5.2.1 Packaged Tag Libraries

JSP page authoring tools are required to accept a Tag Library that is packaged as a JAR file.
When packaged sot he JAR file must have a tag library descriptor file named META-INF/
taglib.tld.
91 JavaServer Pages 1.1 Specification • November 30, 1999

5.2.2 Location of Java Classes

The request-time Tag handler classes and the translation-time TagExtraInfo classes are just
Java classes. In a Web Application they must reside in the standard locations for Java
classes: either in a JAR file in the WEB-INF/lib directory or in a directory in the WEB-INF/
classes directory.

The previous rule indicates that a JAR containing a packaged tag libraries can be dropped
into the WEB-INF/lib directory to make its classes available at request time (and also at
translation time, see Section 5.3.2). The mapping between the URI and the TLD is explained
further below.

5.2.3 Tag Library directive

The taglib directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

If a JSP container implementation cannot locate (following the rules described in
Section 5.3.1) a tag library description for a given URI, a fatal translation error shall result.

It is a fatal translation error for the taglib directive to appear after actions using the prefix
introduced by the taglib directive.

5.3 Tag Library Descriptor
The Tag Library Descriptor (TLD) is an XML document that describes a tag library. The
TLD for a tag library is used by a JSP container to interpret pages that include taglib
directives referring to that tag library. The TLD is also used by JSP page authoring tools that
will generate JSP pages that use a library, and by authors who do the same manually.

The TLD includes documentation on the library as a whole and on its individual tags, version
information on the JSP container and on the tag library, and information on each of the
actions defined in the tag library.

Each action in the library is described by giving its name, the class for its tag handler,
optional information on a TagExtraInfo class, and information on all the attributes of the
action. Each valid attribute is mentioned explicitly, with indication on whether it is
mandatory or not, whether it can accept request-time expressions, and additional information.
Chapter 5 Tag Extensions 92

in the
A TLD file is useful as a descriptive mechanism for providing information on a Tag Library.
It has the advantage that it can be read by tools without having to instantiate objects or load
classes. The approach we follow conforms to the conventions used in other J2EE
technologies.

The DTD to the tag library descriptor is organized so that interesting elements have an
optional ID attribute. This attribute can be used by other documents, like vendor-specific
documents, to provide annotations of the TLD information. An alternative approach, based
on XML name spaces have some interesting properties but it was not pursued in part for
consistency with the rest of the J2EE descriptors.

The official DTD is described at "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"

5.3.1 Locating a Tag Library Descriptor

The URI describing a Tag Library is mapped to a Tag Library Descriptor file though two
mechanisms: a map in web.xml described using the taglib element, and a default
mapping.

5.3.1.1 Taglib map in web.xml

The map in web.xml is described using the taglib element of the Web Application
Deployment descriptor in WEB-INF/web.xml, as described in the Servlet 2.2 spec and in
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”.

A taglib element has two subelements: taglib-uri and taglib-location.

taglib

A taglib is a subelement of web-app:

<!ELEMENT web-app taglib* >

The taglib element provides information on a tag library that is used by a JSP page with
Web Application.

A taglib element has two subelements and one attribute:

<!ELEMENT taglib (taglib-uri, taglib-location) >
<!ATTLIST taglib id ID #IMPLIED>
93 JavaServer Pages 1.1 Specification • November 30, 1999

taglib-uri

A taglib-uri element describes a URI identifying a Tag Library used in the Web
Application.

<!ELEMENT taglib-uri (#PCDATA) >
PCDATA ::= a URI spec. It may be either an absolute URI
specification, or a relative URI as in Section 2.5.2.

taglib-location

A taglib-location contains the location (as a resource) where to find the Tag Library
Description File for this Tag Library.

<!ELEMENT taglib-location (#PCDATA) >
PCDATA ::= a resource location, as indicated in Section 2.5.2,
where to find the Tag Library Descriptor file.

Example

The use of relative URI specifications enables very short names in the taglib directive.
For example:

<%@ taglib uri=”/myPRlibrary” prefix=”x” %>

and then

<taglib>
 <taglib-uri>/myPRlibrary</taglib-uri>
 <taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-uri>
</taglib>

5.3.1.2 Default location

If there is no taglib-uri subelement that matches the URI used in a taglib directive,
the tag library descriptor will be searched in the location indicated by the URI itself.

This rule only applies to URIs that are relative URI specifications (as in Section 2.5.2).

Example

This rule allows a taglib directive to refer directly to the TLD. This arrangement is very
convenient for quick development at the expense of less flexibility and accountability. For
example in the case above, it enables:

<%@ taglib uri=”/tlds/PRlibrary_1_4.tld” prefix=”x” %>
Chapter 5 Tag Extensions 94

sions,
5.3.2 Translation-Time Class Loader

The set of classes available at translation time is the same as available at runtime: the classes
in the underlying Java platform, those in the JSP container, and those in the class files in
WEB-INF/classes, in the JAR files in WEB-INF/lib, and, indirectly through the use of
the class-path attribute in the META-INF/MANIFEST file of these JAR files.

5.3.3 Assembling a Web Application

As part of the process of assembling a Web Application together, the Application Assembler
will create a WEB-INF/ directory, with appropriate lib/ and classes/ subdirectories,
place JSP pages, Servlet classes, auxiliary classes, and tag libraries in the proper places and
then create a WEB-INF/web.xml that ties everything together.

Tag libraries that have been delivered in the standard format can be dropped directly into
WEB-INF/lib. The assembler may create taglib entries in web.xml for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change information that
customizes a tag library; see Section 5.8.3.

5.3.4 Well-Known URIs

A JSP container may "know of" some specific URIs and may provide alternate
implementations for the tag libraries described by these URIs, but the user must see the same
behavior as that described by the, required, portable tag library description described by the
URI.

A JSP container must always use the mapping specified for a URI in the web.xml
deployment descriptor if present. If the deployer wants to use the platform-specific
implementation of the well-known URI, the mapping for that URI should be removed at
deployment time.

If there is no mapping for a given URI and the URI is not well-known to the JSP container,
a translation-time error will occur.

There is no guarantee that this “well-known URI” mechanism will be preserved in later
releases of the JSP specification. As experience accumulates on how to use tag exten
the JSP specification may incorporate new functionality that will make the “well-known
URI” mechanism unnecessary; at that point it may be removed.
95 JavaServer Pages 1.1 Specification • November 30, 1999

5.3.5 The Tag Library Descriptor Format

This section describes the DTD for the Tag Library Descriptor. This is the same DTD as
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd", except for some formatting
changes to extract comments and make them more readable.

Notation
<!NOTATION WEB-JSPTAGLIB.1_1 PUBLIC “-//Sun Microsystems, Inc.//DTD
JSP Tag Library 1.1//EN”>

taglib

The taglib element is the document root. A taglib has two attributes.

<!ATTLIST taglib
id

ID
#IMPLIED

xmlns
CDATA
#FIXED
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"

>

A taglib element also has several subelements that define:

tlibversion the version of the tag library implementation

jspversion the version of JSP specification the tag library depends upon

shortname a simple default short name that could be used by a JSP page authoring tool to
create names with a mnemonic value; for example, the it may be used as the
preferred prefix value in taglib directives.

uri a uri uniquely identifying this taglib.

info a string describing the “use” of this taglib

<!ELEMENT taglib
(tlibversion, jspversion?,
 shortname, uri?, info?,
 tag+) >

tlibversion

Describes this version (number) of the taglibrary.
Chapter 5 Tag Extensions 96

The syntax is:

<!ELEMENT tlibversion (#PCDATA) >

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3

jspversion

Describes the JSP specification version (number) this taglibrary requires in order to function.
The default is 1.1

The syntax is:

<!ELEMENT jspversion (#PCDATA) >

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3.

shortname

Defines a simple default short name that could be used by a JSP page authoring tool to create
names with a mnemonic value; for example, the it may be used as the preferred prefix value in
taglib directives and/or to create prefixes for IDs . Do not use white space, and do not start
with digits or underscore.

The syntax is

<!ELEMENT shortname (#PCDATA) >

#PCDATA ::= NMTOKEN

uri

Defines a public URI that uniquely identifies this version of the tag library. It is
recommended that the URI identifying a tag library is actually a URL to the tag library
descriptor for this specific version of the tag library.

<!ELEMENT uri (#PCDATA) >

info

Defines an arbitrary text string describing the tag library.

<!ELEMENT info (#PCDATA) >

tag

The tag defines an action in this tag library. It has one attribute:
97 JavaServer Pages 1.1 Specification • November 30, 1999

<!ATTLIST tag id ID #IMPLIED >

The tag may have several subelements defining:

name the unique action name

tagclass the tag handler class implementing javax.servlet.jsp.tagext.Tag

teiclass an optional subclass of
javax.servlet.jsp.tagext.TagExtraInfo

bodycontent the body content type

info optional tag-specific information

attribute all attributes of this action

The element syntax is as follows:

<!ELEMENT tag
(name, tagclass, teiclass?,
bodycontent?, info?, attribute*) >

tagclass

Defines the tag handler class implementing the javax.serlvet.jsp.tagext.Tag
interface. This element is required.

The syntax is:

<!ELEMENT tagclass (#PCDATA) >

#PCDATA ::= fully qualified Java class name.

teiclass

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag.
This element is optional.

The syntax is:

<!ELEMENT teiclass (#PCDATA) >

 #PCDATA ::= fully qualified Java class name

bodycontent

Provides a hint as to the content of the body of this action. Primarily intended for use by
page composition tools.

There are currently three values specified:
Chapter 5 Tag Extensions 98

 of

f the
tagdependent The body of the action is interpreted by the tag handler itself, and is most
likely in a different “language”, e.g. embedded SQL statements. The body
the action may be empty.

JSP The body of the action contains elements using the JSP syntax. The body o
action may be empty.

empty The body must be empty

The default value is “JSP”.

The syntax is:

<!ELEMENT bodycontent (#PCDATA) >

#PCDATA ::= tagdependent | JSP | empty.

attribute

Provides information on an attribute of this action. Attribute defines an id attribute for
external linkage.

<!ATTLIST attribute id ID#IMPLIED>

The subelements of attribute are of the form:

name the attributes name (required)

required if the attribute is required or optional (optional)

rtexprvalue if the attributes value may be dynamically calculated at runtime by a scriptlet
expression (optional)

The syntax is:

<!ELEMENT attribute
(name, required?,
rtexprvalue?) >

name

Defines the canonical name of a tag or attribute being defined

The syntax is:

<!ELEMENT name (#PCDATA) >

#PCDATA ::= NMTOKEN
99 JavaServer Pages 1.1 Specification • November 30, 1999

of the

ring

aces

SP
required

Defines if the nesting attribute is required or optional.

The syntax is:

<!ELEMENT required (#PCDATA) >

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.

rtexprvalue

Defines if the nesting attribute can have scriptlet expressions as a value, i.e the value
attribute may be dynamically calculated at request time, as opposed to a static value
determined at translation time.

The syntax is:

<!ELEMENT rtexprvalue (#PCDATA) >

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value

5.4 Tag Handlers
A tag handler is a run-time server-side object that is created to help evaluate actions du
the execution of a JSP page. A tag handler supports a run-time protocol that facilitates
passing information from the JSP page to the handler.

A tag handler is a server-side invisible JavaBeans component, but it implements an
additional interface to indicate that it has a richer run-time protocol. There are two interf
that describe a tag handler: Tag is used for simple tag handlers that are not interested in
manipulating their body content (if any); BodyTag is an extension of Tag and gives a tag
handler access to its body. The TagSupport and BodyTagSupport classes can be used
as base classes when creating new tag handlers.

5.4.1 Properties

A tag handler has some properties that are set by the JSP container (usually through the J
page implementation class) using setter methods:
Chapter 5 Tag Extensions 100

• The pageContext object for the JSP page where the tag is located; this object can be used
to access defined objects.

• The parent tag handler for the enclosing action.

A tag handler may have additional properties, as any other JavaBean component. These
properties will have setters and getter methods, as described in the JavaBeans component
specification, and used throughout the Java platform.

All attributes of a custom action must be JavaBeans component properties, although some
properties may not be exposed as attributes in the Tag Library Descriptor.

Additional translation time information (TagExtraInfo) associated with the action
indicates the name of the variables it introduces, their types and their scope. At specific
moments (after processing the start tag; after processing the end tag), the JSP container can
automatically synchronize the PageContext information with variables in the scripting
language so they can be made available directly through the scripting elements.

5.4.2 Basic Protocol: Tag Interface

This section describes the Tag interface which defines the basic contract for all tag handlers.
See Section 5.4.7 for a summary of the life-cycle issues.

A tag handler has some properties that must be initialized before it can be used. It is the
responsibility of the JSP container to invoke the appropriate setter methods to initialize these
properties. Once properly set, these properties are expected to be persistent, so that if the
JSP container ascertains that a property has already been set on a given tag handler instance,
it needs not set it again. These properties include the properties in the Tag interface as well
as other properties

Once initialized, the doStartTag and doEndTag methods can be invoked on the tag
handler. Between these invocations, the tag handler is assumed to hold a state that must be
preserved. After the doEndTag invocation, the tag handler is available for further
invocations (and it is expected to have retained its properties). Once all invocations on the
tag handler are completed, the release method is invoked on it. Once a release method
is invoked all properties are assumed to have been reset to an unspecified value.

Properties

All tag handlers must have the following properties: pageContext, and parent. When setting
properties, the order is always pageContext and parent. The Tag interface specifies the setter
methods for all properties, and the getter method for parent.

setPageContext(PageContext) Sets the pageContext property of a tag handler.

setParent(Tag) Sets the parent Tag for a tag handler.
101 JavaServer Pages 1.1 Specification • November 30, 1999

Tag getParent() Get the parent Tag for a tag handler. This method is used by the
findAncestorWithClass static method in TagSupport.

Methods

There are two main action methods and one method for releasing all resources owned by a
tag handler.

doStartTag() Process the start tag of this action. The doStartTag method assumes that
the properties pageContext and parent have been set. It also assumes that any
properties exposed as attributes have been set too. When this method is
invoked, the body has not yet been evaluated.

At the end of this method invocation some scripting variables may be assigned
from the pageContext object, as indicated by the optional
TagExtraInfo class (at translation time).

This method returns an indication of whether the body of the action should be
evaluated (EVAL_BODY_INCLUDE or EVAL_BODY_TAG) or not
(SKIP_BODY). See below for more details.

EVAL_BODY_INCLUDE is not valid if the tag handler implements
BodyTag; EVAL_BODY_TAG is not valid if the tag handler implements
Tag and does not implement BodyTag.

This method may throw a JspException.

doEndTag() Process the end tag of this action. This method will be called after returning
from doStartTag. The body of the action may or not have been evaluated,
depending on the return value of doStartTag.

At the end of this method invocation some scripting variables may be assigned
from the pageContext object, as indicated by the optional
TagExtraInfo class (at translation time).

If this method returns EVAL_PAGE, the rest of the page continues to be
evaluated. If this method returns SKIP_PAGE, the rest of the page is not
evaluated and the request is completed. If this request was forwarded or
included from another page (or Servlet), only the current page evaluation is
completed.

This method may throw a JspException.

release() Release a tag instance.
Chapter 5 Tag Extensions 102

Simple Actions with non-empty Bodies

If a tag library descriptor maps an action with a non-empty body to a tag handler that
implements the Tag interface, the tag handler cannot manipulate this body because there is
no mechanism for the tag handler to access that body. To make the situation more explicit,
the return value of doStartTag is either SKIP_BODY, EVAL_BODY_INCLUDE or
EVAL_BODY_TAG. The meanings are as follows:

• SKIP_BODY means do not process the body of the action (if it exists).

• EVAL_BODY_INCLUDE means process the body of the action but do not create a new
BodyContent (see below) nor change the value of the out implicit object.

• EVAL_BODY_TAG means create a new BodyContent, change the value of the out
implicit object and process the body of the action.

A typical use for EVAL_BODY_INCLUDE could be a conditional inclusion action tag.
Since the body is to be passed through directly, there is no need for the tag handler to
manipulate it, and thus the tag handler needs not implement BodyTag.

To help in catching errors, EVAL_BODY_INCLUDE is not valid in a tag handler that
implements BodyTag, while EVAL_BODY_TAG is not valid in a tag handler that
implements Tag but does not implement BodyTag.

5.4.3 The TagSupport Base Class

The TagSupport class is a utility class intended to be used as the base class for new tag
handlers. The TagSupport class implements the Tag interface and adds additional
convenience methods including getter methods for the properties in Tag. TagSupport has
one static method that is included to facilitate coordination among cooperating tags.

Tag findAncestorWithClass(Tag,
class) Find the instance of a given class type that is closest to a given instance. This

method uses the getParent method from the Tag interface.

The return value of the doStartTag() method is SKIP_BODY. The return value of the
doEndTag() method is EVAL_PAGE.

5.4.4 Body Protocol: BodyTag Interface

The BodyTag interface extends Tag with methods to manipulate the body of an action.
These methods act on the bodyContent property of a BodyTag instance.
103 JavaServer Pages 1.1 Specification • November 30, 1999

It is the responsibility of the tag handler to manipulate the body content. For example the tag
handler may take the body content, convert it into a String using the
bodyContent.getString method and then use it. Or the tag handler may take the body
content and write it out into its enclosing JspWriter using the bodyContent.writeOut
method.

A tag handler that implements BodyTag is treated as one that implements Tag, except that
the doStartTag method can either return SKIP_BODY or EVAL_BODY_TAG, not
EVAL_BODY_INCLUDE. If EVAL_BODY_TAG is returned, then a BodyContent object
will be created to capture the body evaluation. This object is obtained by calling the
pushBody method of the current pageContext, which additionally has the effect of
saving the previous out value. The object is returned through a call to the popBody
method of the PageContext class; the call also restores the value of out.

Properties

There is only one additional property: bodyContent

setBodyContent(BodyContent) Set the bodyContent property. It will be invoked at most once per action
invocation. It will be invoked before doInitBody and it will not be invoked if
there is no body evaluation.

When setBodyContent is invoked, the value of the implicit object out has
already been changed in the pageContext object. The body passed will have
not data on it.

Methods

There are two action methods:

doInitBody() Invoked before the first time the body is to be evaluated. Not invoked in empty tags or
in tags returning SKIP_BODY in doStartTag().

Depending on TagExtraInfo values, the JSP container will resynchronize some variable
values after the doInitBody invocation.

This method may throw a JspException.

doAfterBody() Invoked after every body evaluation. Not invoked in empty tags or in tags returning
SKIP_BODY in doStartTag. If doAfterBody returns EVAL_BODY_TAG, a
new evaluation of the body will happen (followed by another invocation of
Chapter 5 Tag Extensions 104

 be

new

 for
doAfterBody). If doAfterBody returns SKIP_BODY no more body
evaluations will occur, the value of out will be restored using the popBody method in
pageContext, and then doEndTag will be invoked.

The method re-invocations may be lead to different actions because there might have
been some changes to shared state, or because of external computation..

Depending on TagExtraInfo values, the JSP container will resynchronize some variable
values after every doAfterBody invocation (so a reevaluation of the body will
return a different value).

This method may throw a JspException.

5.4.5 The BodyContent Class

The BodyContent is a subclass of JspWriter that can be used to process body
evaluations so they can retrieved later on. The class has methods to convert its contents into
a String, to read its contents, and to clear the contents.

The buffer size of a BodyContent object is “unbounded”. A BodyContent object cannot
in autoFlush mode. It is not possible to invoke flush on a BodyContent object, as there is
no backing stream. This means that it is not legal to do a jsp:include when out is not
bound to the top-level JspWriter.

Instances of this class are created by invoking the pushBody and popBody methods of the
PageContext class. A BodyContent is enclosed within another JspWriter (maybe
another BodyContent object) following the structure of their associated actions.

The BodyContent type contains four main methods:

clearBody() This is a version of the clear() method from JspWriter that is guaranteed not to
throw exceptions.

getReader() Get a reader into the contents of this instance.

getString() As getReader() but returns a String.

writeOut(Writer) Write out the content of this instance into the provided Writer.

getEnclosingWriter() Get the JspWriter enclosing this BodyContent.

5.4.6 The BodyTagSupport Base Class

The BodyTagSupport class is a utility class intended to be used as the base class for
tag handlers implementing BodyTag. The BodyTagSupport class implements the
BodyTag interface and adds additional convenience methods including getter methods
the bodyContent property and methods to get at the previous out JspWriter.
105 JavaServer Pages 1.1 Specification • November 30, 1999

The return value of the doStartTag() method is EVAL_BODY_TAG. The return value of
the doEndTag() method is EVAL_PAGE. The return value of the doAfterBody()
method is SKIP_BODY.

5.4.7 Life-Cycle Considerations

At execution time the implementation of a JSP page will use an available Tag instance with
the appropriate prefix and name that is not being used, initialize it, and then follow the
protocol described below. Afterwards, it will release the instance and make it available for
further use. This approach reduces the number of instances that are needed at a time.

Initialization is done by setting the properties pageContext and parent, in that order, while
release is done by invoking release().
Chapter 5 Tag Extensions 106

An Execution Trace
The following figure shows the run-time trace for two actions supported by a tag handler
implementing BodyTag; setters are in italics, while actions are not. The inner boxes highlight
the portion of the protocol used to interact with the body of the tag. In this example, we are
assuming that the second action has the same parent but one different attribute values.

h.setPageContext(pageContext);
h.setParent(parent);
h.setAttribute1(value1);
h.setAttribute2(value2);...
h.doStartTag()

out = pageContext.pushBody()
h.setBodyContent(out)
h.doInitBody()
[BODY]
h.doAfterBody()
....
[BODY]
h.doAfterBody()
......
out = pageContext.popBody()

h.doEndTag();

h.setAttribute2(value3);
h.doStartTag()

out = pageContext.pushBody()
h.setBodyContent(out)
h.doInitBody()
[BODY]
h.doAfterBody()
....
[BODY]
h.doAfterBody()
......
out = pageContext.popBody()

h.doEndTag();

h.release()

Body Actions
107 JavaServer Pages 1.1 Specification • November 30, 1999

5.5 Scripting Variables
The JSP specification supports scripting variables that can be declared within a scriptlet and
can be used in another. The actions in a JSP page also can be used to define scripting
variables so they can used in scripting elements, or in other actions; for example, the
jsp:useBean standard action may define an object which can later be used through a scripting
variable.

Since the logic that decides whether an action instance will define a scripting variable may
be quite complex, this information is not encoded in the Tag Library Descriptor directly;
rather, the name of a TagExtraInfo class is given in the TLD and the
getVariableInfo method is used at translation time to obtain information on each
variable that will be created at request time when this action is executed. The method is
passed a TagData instance that contains the translation-time attribute values.

The result of the invocation on getVariableInfo is an array of VariableInfo
objects. Each such object describes a scripting variable by providing its name, its type,
whether the variable is new or not, and what its scope is. Scope is best described through a
picture:.

The defined values for scope are:

• NESTED, if the scripting variable is available between the start tag and the end tag of the
action that defines it.

• AT_BEGIN, if the scripting variable is available from the start tag of the action that
defines it until the end of the page.

• AT_END, if the scripting variable is available after the end tag of the action that defines
it until the end of the page.

The scope value for a variable implies what methods may affect its value and thus, in lack of
additional information, where synchronization is needed:

<foo>

 body

</foo>

NESTED

AT_BEGIN

AT_END
Chapter 5 Tag Extensions 108

d
• for NESTED, after doInitBody and doAfterBody for a tag handler implementing
BodyTag, and after doStartTag otherwise.

• for AT_BEGIN, after doInitBody, doAfterBody, and doEndTag for a tag
handler implementing BodyTag, and doStartTag and doEndTag otherwise.

• for AT_END, after doEndTag method.

5.6 Cooperating Actions
Often two actions in a JSP page want to cooperate, perhaps by one action creating some
server-side object that is used by the other. There are two basic mechanisms in the JSP
specification to achieve this.

5.6.1 Ids and PageContext.

One mechanism for supporting cooperation among actions is by giving the object a name
within the JSP page; the first action creates and names the object while the second action
uses the name to retrieve the object.

For example, in the following JSP page fragment the foo action creates a server-side object
and give it the name “myObject”. Then the bar action accesses that server-side object an
takes some action.

<x:foo id=”myObject” />
<x:bar ref=”myObjet” />

In a JSP container implementation, the mapping between the name and the value is kept by
the implicit object pageContext. This object is passed around through the tag handler
instances so it can be used to communicate information: all it is needed is to know the name
under which the information is stored into the pageContext.

5.6.2 Run-Time Stack

An alternative to explicit communication of information through a named object is implicit
coordination based on syntactic scoping.

For example, in the following JSP page fragment the foo action might create a server-side
object; later the nested bar action might access that server-side object. The object is not
named within the pageContext: it is found because the specific foo element is the closest
enclosing instance of a known element type.
109 JavaServer Pages 1.1 Specification • November 30, 1999

<foo>
 <bar/>
</foo>

This functionality is supported through the findAncestorWithClass(Tag, Class)
static method of the Tag class which uses a reference to parent tag kept by each Tag instance,
which effectively provides a run-time execution stack.

5.7 Validation
Frequently there are constraints on how actions are to be used and when these constraints are
not kept an error should be reported to the user. There are several mechanisms in the JSP 1.1
specification to describe syntactic and semantic constraints among actions; future
specifications may add additional mechanisms.

5.7.1 Syntactic Information on the TLD

The Tag Library Descriptor contains some basic syntactic information. In particular, the
attributes are described including their name, whether they are optional or mandatory, and
whether they accept request-time expressions. Additionally the bodycontent attribute can
be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author can assume that
the tag handler instance corresponds to an action that satisfies all constraints indicated in the
TLD.

5.7.2 Syntactic Information in a TagExtraInfo Class

Additional translation-time validation can be done using the isValid method in the
TagExtraInfo class. The isValid method is invoked at translation-time and is passed a
TagData instance as its argument.

5.7.3 Raising an Error at Action Time

In some cases, additional request-time validation will be done dynamically within the
methods in the tag handler. If an error is discovered, an instance of JspError can be
thrown. If uncaught, this object will invoke the errorpage mechanism of the JSP
specification.
Chapter 5 Tag Extensions 110

ed in
it

tion.
5.8 Conventions and Other Issues
This section is not normative, although it reflects good design practices.

5.8.1 How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:

• Define a tag library.

• Add an action called defineObjects; this action will define the desired objects.

Then the JSP page can make these objects available as follows:

<%@ tablig prefix="me" uri="......" %>
<me:defineObjects />
.... start using the objects....

This approach has the advantage of requiring no new machinery and of making very explicit
the dependency.

In some cases there may be some implementation dependency in making these objects
available; for example, they may be providing access to some functionality that only exists in
some implementation. This can be done by having the tag extension class test at run-time for
the existence of some implementation dependent feature and raise a run-time error (this, of
course, makes the page not J2EE compliant, but that is a different discussion).

This mechanism, together with the access to metadata information allows for vendors to
innovate within the standard.

Note: if a feature is added to a JSP specification, and a vendor also provides that feature
through its vendor-specific mechanism, the standard mechanism, as indicated in the JSP
specification will “win”. This means that vendor-specific mechanisms can slowly migrate
into the specification as they prove their usefulness.

5.8.2 Access to Vendor-Specific information

If a vendor wants to associate with some tag library some information that is not describ
the current version of the TLD, it can do so by inserting the information in a document
controls, inserting the document in the WEB-INF portion of the JAR file where the Tab
Library resides, and using the standard Servlet 2.2 mechanisms to access that informa

The vendor can now use the ID machinery to refer to the element within the TLD.
111 JavaServer Pages 1.1 Specification • November 30, 1999

5.8.3 Customizing a Tag Library

A tag library can be customized at assembly and deployment time. For example, a tag
library that provides access to databases may be customized with login and password
information.

There is no convenient place in web.xml in the Servlet 2.2 spec for customization
information A standardized mechanism is probably going to be part of a forthcoming JSP
specification, but in the meantime the suggestion is that a tag library author place this
information in a well-known location at some resource in the WEB-INF/ portion of the
Web Application and access it via the getResource() call on the ServletContext.
Chapter 5 Tag Extensions 112

113 JavaServer Pages 1.1 Specification • November 30, 1999

CHAPTER 6

JSP Technology Classes

This chapter describes the packages that are part of the JSP 1.1 specification. The packages
may be used in a number of situations, including within scripting elements, by base classes,
and in implementations of Tag Extensions.

There are two packages

• javax.servlet.jsp

• javax.servlet.jsp.tagext.

The javadoc documents that accompany this specification1 provide detailed description of the
packages. This appendix provides an overview, context, and usage guidelines.

6.1 Package javax.servlet.jsp
The javax.servlet.jsp package contains a number of classes and interfaces that describe and
define the contracts between a JSP page implementation class and the runtime environment
provided for an instance of such a class by a conforming JSP container.

6.1.1 JspPage and HttpJspPage

Two interfaces describe the interaction between a class implementing a JSP page and the JSP
container: HttpJspPage and JspPage. Chapter 3 describes the role of these two interfaces in
detail. The JspPage contract is not further described here, see the javadoc documentation
for details.

The large majority of the JSP pages use the HTTP protocol and thus are based on the
HttpJspPage contract. This interface has three methods, two of which can be redefined by
the JSP author using a declaration scripting element:
1. All JSP-related specifications are available from http://java.sun.com/products/jsp.
 JSP Technology Classes 114

jspInit() The jspInit() method is invoked when the JSP page is initialized. It is the
responsibility of the JSP implementation (and of the class mentioned by the extends
attribute, if present) that at this point invocations to the getServletConfig()
method will return the desired value.

A JSP page can override this method by including a definition for it in a declaration
element.

The signature of this method is void jspInit().

jspDestroy() The jspDestroy() method is invoked when the JSP page is about to be destroyed.

A JSP page can override this method by including a definition for it in a declaration
element.

The signature of this method is void jspDestroy().

_jspService() The _jspService() method corresponds to the body of the JSP page. This method is
defined automatically by the JSP container and should never be defined by the JSP
page author.

If a superclass is specified using the extends attribute, that superclass may choose to
perform some actions in its service() method before or after calling the _jspService()
method. See Section 3.2.4.

The signature of this method is public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException.

6.1.2 JspWriter

The actions and template data in a JSP page is written using the JspWriter object that is
referenced by the implicit variable out. This variable is initialized by code generated
automatically by the JSP container (see the PageContext object in Section 6.1.4).

The initial JspWriter object is associated with the PrintWriter object of the
ServletResponse in a way that depends on whether the page is or not buffered. If the
page is not buffered, output written to this JspWriter object will be written through to
the PrintWriter directly, which will be created if necessary by invoking the
getWriter() method on the response object. But if the page is buffered, the
PrintWriter object will not be created until when the buffer is flushed, and operations
like setContentType() are legal. Since this flexibility simplifies programming
substantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two approaches can be
taken:

• Exceeding the buffer is not a fatal error; when the buffer is exceeded, just flush the
output.

• Exceeding the buffer is a fatal error; when the buffer is exceeded, raise an exception.
115 JavaServer Pages 1.1 Specification • November 30, 1999

se of
riter

hat
Both approaches are valid, and thus both are supported in the JSP technology. The behavior
of a page is controlled by the autoFlush attribute, which defaults to true. In general, JSP
pages that need to be sure that correct and complete data has been sent to their client may
want to set autoFlush to false, with a typical case being that where the client is an
application itself. On the other hand, JSP pages that send data that is meaningful even when
partially constructed may want to set autoFlush to true; a case may be when the data is
sent for immediate display through a browser. Each application will need to consider their
specific needs.

An alternative considered was to make the buffer size unbounded, but this has the
disadvantage that runaway computations may consume an unbounded amount of resources.

The JspWriter interface includes behaviors from java.io.BufferedWriter and
java.io.PrintWriter API’s but incorporates buffering and does not consume
IOExceptions as PrintWriter does. If a particular use requires a PrintWriter, as in the ca
desiring to insert an exception stack trace, one can be obtained by wrapping the JspW
with a PrintWriter.

The usual methods found in PrintWriter are available with the only modification being t
the JspWriter methods do not consume IOExceptions. The additional methods are:

clear() This method is used to clear the buffer of data. It is illegal to invoke it if the JspWriter
is not buffered. And exception will be raised if the buffer has been autoFlushed and
clear() is invoked. Also see clearBuffer().

The method signature is void clear()

clearBuffer() This method is like clear() except that no exception will be raised if the buffer has been
autoFlushed().

The method signature is void clearBuffer().

flush() This method is used to flush the buffer of data. The method may be invoked indirectly
if the buffer size is exceeded. The underlying PrintWriter object is guaranteed to be
created exactly the first time data is flushed to it.

The method signature is void flush()

close() This method can be used to close the stream. It needs not be invoked explicitly for the
initial JspWriter as the code generated by the JSP container will automatically include
a call to close().

The method signatures is void close().

getBufferSize() This method returns the size of the buffer used by the JspWriter.

The method signatures is int getBufferSize()

getRemaining() This method returns the number of unused bytes in the buffer.

The method signature is int getRemaining()
Appendix 6 JSP Technology Classes 116

t-

P
isAutoFlush() This method indicates whether the JspWriter is autoFlushing.

The method signature is boolean isAutoFlush()

6.1.3 JspException and JspError

JspException is a generic exception class. It currently has one subclass: JspError. A
JspError has a message and it reflects an unexpected error that has been found during the
execution of a JSP page. If uncaught, the error will result in an invocation of the errorpage
machinery.

6.1.4 PageContext

A PageContext provides an object that encapsulates implementation-dependent features
and provides convenience methods. A JSP page implementation class that uses a
PageContext as shown in FIGURE F-1 will run unmodified in any compliant JSP container
taking advantage of implementation-specific improvements like high performance
JspWriters. JSP 1.1 compliant containers must generate JSP page implementation classes
that use this PageContext object to provide insulation from platform implementation
details.

A PageContext object is initialized by a JSP container implementation early on in the
processing of the _jspService() method. The PageContext implementation itself is
implementation dependent, and is obtained via a creation method on the JspFactory.

The PageContext provides a number of facilities, including:

• a single API that manages the operations available over various scope namespaces
(page, request, session, application) such as setAttribute(),
getAttribute() and removeAttribute(), etc.

• a mechanism for obtaining a platform dependent implementation of the JspWriter that
is assigned to the “out” implicit scripting variable.

• a number of simple convenience getter API’s for obtaining references to various reques
time objects.

• mechanisms to forward or include the current request being processed to other
components in the application

6.1.4.1 Creation

The PageContext class is an abstract class, designed to be extended by conforming JS
container runtime environments to provide implementation dependent implementations.
117 JavaServer Pages 1.1 Specification • November 30, 1999

An instance of a PageContext is created by a JSP container-specific implementation class at
the beginning of it’s _jspService() method via an implementation-specific default
JspFactory, as shown in FIGURE F-1:

6.1.4.2 Usage

The PageContext object provides access to multiple functionality

FIGURE F-1 Using PageContext to Provide Implementation-Independence

public void _jspService(HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {

JSPFactory factory =
JSPFactory.getDefaultFactory();

// Get the page context object for this page
PageContext pageContext = factory.getPageContext(

this,
request,
response,
null, // e.g. no errorPageURL,
false, // e.g. no session
JspWriter.DEFAULT_BUFFER,
true // autoflush=true
);

// Initialize implicit variables for scripting
HttpSession session = pageContext.getSession();
JspWriter out = pageContext.getOut();
Object page = this;
try {

// body of JSP here ...
} catch (Exception e) {

out.clear();
pageContext.handlePageException(e);

} finally {
out.close();
factory.releasePageContext(pageContext);

}
}

Appendix 6 JSP Technology Classes 118

Uniform Access to Multiple Scopes

These methods provide uniform access to the diverse scopes objects. The implementation
must use the underlying Servlet machinery corresponding to that scope, so information can
be passed back and forth between Servlets and JSP pages.

getAttribute() Access an attribute in the page scope, or null if not found.

getAttribute() Overload of previous method to access an attribute in a given scope or null if
not found.

findAttribute() Searches for the named attribute in page, request, session (if valid) and
application scopes in order and returns the value associated or null.

getAttributeNamesInScope() Enumerate all the attributes in a given scope

getAttributesScope() Get the scope where a given attribute is defined

removeAttribute() Remove the object reference associated with the given name, look in all scopes
in the scope order.

removeAttribute() Overload of previous method to remove the object reference associated with
the given name in the given scope.

setAttribute() Register the given name and object in the page scope.

setAttribute() Overload of previous method to register the given name and object in the given
scope.

Access to Implicit Objects

These methods provide convenience access to implicit objects and other objects that can be
obtained by different ways.

getOut() The current value of the out object (a JspWriter).

getException() The current value of the exception object (an Exception).

getPage() The current value of the page object (a Servlet).

getRequest() The current value of the request object (a ServletRequest).

getResponse() The current value of the response object (a ServletResponse).

getSession() The current value of the session object (an HttpSession).

getServletConfig() The ServletConfig instance.

getServletContext() The ServletContext instance.
119 JavaServer Pages 1.1 Specification • November 30, 1999

Management of Nested Scopes

These methods enable the management of nested JspWriter streams to implement Tag
Extensions. Note that pushBody() returns a BodyContent, while popBody() returns a
JspWriter, which will need to be casted into a BodyContent in all but the top level.

pushBody() Return a new BodyContent object, save the current "out" JspWriter,
and update the value of the "out" attribute in the page scope attribute
namespace of the PageContext

popBody() Return the previous JspWriter "out" saved by the matching
pushBody(), and update the value of the "out" attribute in the page scope
attribute namespace of the PageContext.

Management of PageContext Object

The following two methods provide management of the PageContext object itself. These
methods are not intended to be used by the JSP page author.

initialize() Initialize a PageContext with the given data.

release() Release a PageContext object.

Forward and Includes

These methods encapsulate forwarding and inclusion.

forward() This method is used to forward the current ServletRequest and ServletResponse
to another component in the application.

The signature of this method is void forward(String relativeUrlPath) throws
ServletException, IOException.

include() This method causes the resource specified to be processed as part of the current
ServletRequest and ServletResponse being processed by the calling Thread.

The signature of this method is void include(String relativeUrlPath) throws
ServletException, IOException.

handlePageException() Process an unhandled page level exception by performing a redirect.

The signature of this method is void handlePageException(Exception e) throws
ServletException, IOException.
Appendix 6 JSP Technology Classes 120

P

t

ly

ation-
alics:
6.1.5 JspEngineInfo

The JspEngineInfo class provides information on the JSP container implementation. The
only method currently available is:

getSpecificationVersion() Returns a String in Dewey decimal describing the highest version of the JSP
specification implemented by the JSP container. See the
java.lang.Package class in the Java 2 platform for other methods that
may appear in this class in future specifications.

6.1.6 JspFactory

The JspFactory provides a mechanism to instantiate platform dependent objects in a
platform independent manner. The PageContext class and the JspEngineInfo class are the
only implementation dependent classes that can be created from the factory.

Typically at initialization time, a JSP container will call the static
setDefaultFactory() method in order to register it’s own factory implementation. JS
page implementation classes will use the getDefaultFactory() method in order to
obtain this factory and use it to construct PageContext instances in order to process clien
requests.

JspFactory objects are not intended to be used by JSP page authors.

6.2 Package javax.servlet.jsp.tagext
The classes in the javax.servlet.jsp.tagext package are related to the Tag Extension
mechanism. They are described in detail in Chapter 5. In this section we will just brief
review and group them.

A brief description of the classes follows. Classes whose name ends in Info are transl
time classes. Instances that are initialized from the Tag Library Descriptor are in bold it

BodyContent Encapsulates the evaluation of a tag body.

Tag The interface of a tag handler for an action that does not want to manipulate its body.

BodyTag The interface of a tag handler for an action that wants to manipulate its body.

TagSupport A base class for defining new tag handlers implementing Tag.

BodyTagSupport A base class for defining new tag handlers implementing BodyTag.

TagAttributeInfo: Information on the attributes of a tag.
121 JavaServer Pages 1.1 Specification • November 30, 1999

TagData: The attribute/value information for a tag instance. Used at translation-time only.

TagExtraInfo Tag Author-provided class to describe additional translation-time information.

TagInfo: Information needed by the JSP container at page compilation time.

TagLibraryInfo: Information on a tag library.

VariableInfo Information on scripting variables.
Appendix 6 JSP Technology Classes 122

123 JavaServer Pages 1.1 Specification • November 30, 1999

 the

f the

er

nd
s not
CHAPTER 7

JSP Pages as XML Documents

This chapter defines a standard XML document for each JSP page.

The JSP page to XML document mapping is not visible to JSP 1.1 containers; it will receive
substantial emphasis in the next releases of the JSP specification. Since the mapping has not
received great usage, we particularly encourage feedback in this area.

7.1 Why an XML Representation
There are a number of reasons why it would be impractical to define JSP pages as XML
documents when the JSP page is to be authored manually:

• An XML document must have a single top element; a JSP page is conveniently organized
as a sequence of template text and elements.

• In an XML document all tags are “significant”; to “pass through” a tag, it needs to be
escaped using a mechanism like CDATA. In a JSP page, tags that are undefined by
JSP specification are passed through automatically.

• Some very common programming tokens, like “<“ are significant to XML; the JSP
specification provides a mechanism (the <% syntax) to “pass through” these tokens.

On the other hand, the JSP specification is not gratuitously inconsistent with XML: all
features have been made XML-compliant as much as possible.

The hand-authoring friendliness of JSP pages is very important for the initial adoption o
JSP technology; this is also likely to remain important in later time-frames, but tool
manipulation of JSP pages will take a stronger role then. In that context, there is an ev
growing collection of tools and APIs that support manipulation of XML documents.

The JSP 1.1 specification addresses both requirements by providing a friendly syntax a
also defining a standard XML document for a JSP page. A JSP 1.1-compliant tool need
do anything special with this document.
 JSP Pages as XML Documents 124

7.2 Document Type

7.2.1 The jsp:root Element

An XML document representing a JSP page has jsp:root as its root element type. The
root is also the place where taglibs will insert their namespace attributes. The top element has
an xmlns attribute that enables the use of the standard elements defined in the JSP 1.1
specification.

<jsp:root
xmlns:jsp=”http://java.sun.com/products/jsp/dtd/jsp_1_0.dtd”>

remainder of transformed JSP page
</jsp:root>

7.2.2 Public ID

The proposed Document Type Declaration is:

<! DOCTYPE root
PUBLIC“-//Sun Microsystems Inc.//DTD JavaServer Pages Version 1.1//EN”

“http://java.sun.com/products/jsp/dtd/jspcore_1_0.dtd”>

7.3 Directives
A directive in a JSP page is of the form

<%@ directive { attr=”value” }* %>

Most directives get translated into an element of the form:

<jsp:directive.directive { attr=”value” }* />

7.3.1 The page directive

In the XML document corresponding to JSP pages, the page directive is represented using
the syntax:
125 JavaServer Pages 1.1 Specification • November 30, 1999

and
<jsp:directive.page page_directive_attr_list />

See Section 2.7.1 for description of page_directive_attr_list.

Example

The directive:

<%@ page info=”my latest JSP Example V1.1” %>

corresponds to the XML element:

<jsp:directive.page info=”my latest JSP Example V1.1” />

7.3.2 The include Directive

In the XML document corresponding to JSP pages, the include directive is represented using
the syntax:

<jsp:directive.include file=" relativeURLspec” flush="true|false" />

Examples

Below are two examples, one in JSP syntax, the other using XML syntax:

<%@ include file=”copyright.hmtl” %>

<jsp:directive.include file=”htmldocs/logo.html” />

7.3.3 The taglib Directive

In the XML document corresponding to JSP pages, the taglib directive is represented as an
xmlns: attribute within the root element of the JSP page document.

7.4 Scripting Elements
The JSP 1.1 specification has three scripting language elements—declarations, scriptlets,
expressions. The scripting elements have a “<%”-based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>
Chapter 7 JSP Pages as XML Documents 126

7.4.1 Declarations

In the XML document corresponding to JSP pages, declarations are represented using the
syntax:

<jsp:declaration> declaration goes here </jsp:declaration>

For example, the second example from Section 2.10.1:

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

is translated using a CDATA statement to avoid having to quote the “<“ inside the
jsp:declaration.

<jsp:declaration> <![CDATA[public String f(int i) { if (i<3)
return(“...”); }]]> </jsp:declaration>

DTD Fragment
<!ELEMENT jsp:declaration (#PCDATA) >

7.4.2 Scriptlets

In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

DTD Fragment
<!ELEMENT jsp:scriptlet (#PCDATA) >

7.4.3 Expressions

In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:expression> expression goes here </jsp:expression>

DTD Fragment
<!ELEMENT jsp:expression (#PCDATA) >
127 JavaServer Pages 1.1 Specification • November 30, 1999

ard

and

 JSP
7.5 Actions
The syntax for action elements is based on XML; the only transformations needed are due to
quoting conventions and the syntax of request-time attribute expressions.

7.6 Transforming a JSP Page into an XML
Document
The standard XML document for a JSP page is defined by transformation of the JSP page.

• Add a <jsp:root> element as the root. Enable a “jsp” namespace prefix for the stand
tags within this root.

• Convert all the <% elements into valid XML elements as described in Section 7.4.1
following sections.

• Convert the quotation mechanisms appropriately.

• Convert the taglib directive into namespace attributes of the <jsp:root> element.

• Create CDATA elements for all segments of the JSP page that do not correspond to
elements.

A quick summary of the transformation is shown in TABLE 7-1:

TABLE 7-1 XML standard tags for directives and scripting elements

JSP page element XML equivalent

<%@ page ... %> <jsp:directive.page ... />

<%@ taglib ... %> jsp:root element is annotated with namespace information.

<%@ include ... %> <jsp:directive.include .../>

<%! ... %> <jsp:declaration> </jsp:declaration>

<% ... %> <jsp:scriptlet> </jsp:scriptlet>

<%= %> <jsp:expression> </jsp:expression>
Chapter 7 JSP Pages as XML Documents 128

L
ion’

oting
7.6.1 Quoting Conventions

The quoting rules for the JSP 1.1 specification are designed to be friendly for hand authoring,
they are not valid XML conventions.

Quoting conventions are converted in the generation of the XML document from the JSP
page. This is not yet described in this version of the specification.

7.6.2 Request-Time Attribute Expressions

Request-time attribute expressions are of the form “<%= expression %>”. Although this
syntax is consistent with the syntax used elsewhere in a JSP page, it is not a legal XM
syntax. The XML mapping for these expressions is into values of the form “%= express
%”, where the JSP specification quoting convention has been converted to the XML qu
convention.

7.7 DTD for the XML document
The following is a DTD for the current XML mapping:

FIGURE 7-1 DTD for the XML document

<!ENTITY % jsp.body “
(#PCDATA
|jsp:directive.page
|jsp:directive.include
|jsp:scriptlet
|jsp:declaration
|jsp:expression
|jsp:include
|jsp:forward
|jsp:useBean
|jsp:setProperty
|jsp:getProperty
|jsp:plugin
|jsp:fallback
|jsp:params
|jsp:param)*
“>
129 JavaServer Pages 1.1 Specification • November 30, 1999

<!ELEMENT jsp:useBean %jsp.body;>
<!ATTLIST jsp:useBean
id ID #REQUIRED
class CDATA#REQUIRED
scope (page|session|request|application) “page”>

<!ELEMENT jsp:setProperty EMPTY>
<!ATTLIST jsp:setProperty
name IDREF#REQUIRED
propertyCDATA#REQUIRED
value CDATA#IMPLIED
param CDATA#IMPLIED>

<!ELEMENT jsp:getProperty EMPTY>
<!ATTLIST jsp:getProperty
name IREF #REQUIRED
propertyCDATA#REQUIRED>

<!ELEMENTjsp:includeEMPTY>
<!ATTLISTjsp:include
flush (true|false)"false"
page CDATA#REQUIRED>

<!ELEMENT jsp:forward EMPTY>
<!ATTLISTjsp:forward
page CDATA#REQUIRED>

<!ELEMENT jsp:scriptlet (#PCDATA)>

<!ELEMENT jsp:declaration (#PCDATA)>

<!ELEMENT jsp:expression (#PCDATA)>

<!ELEMENT jsp:directive.page EMPTY>
<!ATTLIST jsp:directive.page
languageCDATA“java”
extendsCDATA#IMPLIED
contentTypeCDATA“text/html; ISO-8859-1”
import CDATA#IMPLIED
session(true|false)“true”
buffer CDATA“8kb”
autoFlush(true|false)“true”
isThreadSafe(true|false)“true”
info CDATA#IMPLIED
errorPageCDATA#IMPLIED
isErrorPage(true|false)“false”>

<!ELEMENT jsp:directive.include EMPTY>
<!ATTLIST jsp:directive.include
file CDATA #REQUIRED>
Chapter 7 JSP Pages as XML Documents 130

<!ELEMENT jsp:root %jsp.body;>
<!ATTLIST jsp:root
xmlns:jspCDATA#FIXED “http://java.sun.com/products/jsp/dtd/
jsp_1_0.dtd”>
131 JavaServer Pages 1.1 Specification • November 30, 1999

APPENDIX A

Examples

This appendix describes some examples of custom actions defined using the Tag Extension
mechanism. Refer to the JSP technology web site (http://java.sun.com/products/jsp) to
retrieve a copy of the examples.

Each example is described briefly and the methods that are defined are explained and
justified.

A.1 Simple Examples
Most tags are likely to be simple encapsulations of some functionality. The first set of
examples are of this type and were already introduced in Section 5.1.3; here they are
described in some more detail.

A.1.1 Call Functionality, no Body

The example of Section 5.1.3.1 is the simplest example:

<x:foo att1="..." att2="..." att3="..." />

In this case:

Tag Library Descriptor Indicates there are 3 mandatory attributes that are only translation-time, and
that FooTag is the handler for tag "foo".

FooTag FooTag needs only provide a method for doStartTag(). The method
doStartTag performs the desired actions, possibly interact with the
PageContext data.

The attribute values are exposed as attributes and their values are set
automatically by the JSP container.
 132

A.1.2 Call Functionality, No Body, Define Object

The example of Section 5.1.3.2 is a simple variation of the previous example:

<x:bar id="mybar" att1="..." att2="..." att3="..." />

In this case:.

Tag Library Descriptor Indicates there are 3 mandatory attributes that are only translation-time, and
that BarTag is the handler for tag "bar". For the example, assume that id is
optional, in which case the TLD also indicates that as being the case.

The TLD also needs to indicate that BarExtraInfo is the name of the class that
will provide information on the scripting variables introduced; see below.

BarTag BarTag needs only provide a method for doStartTag(). The method will
interact with the PageContext data to register the created object with a
name that is the value of the id attribute.

The attribute values are exposed as attributes and their values are set
automatically by the JSP container.

BarExtraInfo This class, to be instantiated at translation time, needs only define a
getVariableInfo() method. This method will look at the TagData
object it is passed and will return either null or an array of VariableInfo
objects of size 1, with the value corresponding to the scripting variable with
name given by the it.

A.1.3 Template Mechanisms

Section 5.1.3.4 refers to a family of template mechanisms that have been used in the past.
All of these mechanisms take some information and replace a token in the template page by
either some fixed expansion or the result of some computation.

These mechanisms can be implemented through an empty-bodied action that is mapped to
Tag handler that uses the desired information to locate the wanted resource and pushes the
information into the JspWriter.

A.1.4 A 0.92-like useBean

The useBean of 0.92 will be described here. Note that the implementation will not be as
efficient as ideal due to the need to do some computation at request evaluation time. Some
discussion of the issues will be included.
133 JavaServer Pages 1.1 Specification • November 30, 1999

ses
 it can
A.2 A Set of SQL Tags
The following is a possible set of SQL tags. Note that this specific syntax is only used for
pedagogical reasons, no endorsement is implied.

A.2.1 Connection, UserId, and Password

The connection tag creates a connection using some userid and password information. To
show tag communication, userid and password are actually subelements of connection.

<x:connection id="con01"
ref="connection.xml">

 <x:userid><%=session.getUserid()%></x:userid>
 <x:password><%=session.getPassword()%><x:password>
</x:connection>

In this example the “con01” object is available after the element.

This example uses the run-time stack so userid and password can locate their enclosing
connection tag and can update userid and password data in there. This example also u
PageContext to register the SQL connection object with the pagecontext using "con01" so
be retrieed later.

Tag Library Descriptor Indicates the names of the tags and their attributes. It associates Tag handlers
with the tags. It also associates the ConnectionExtraInfo as the TagExtraInfo
for connection.

UserIdTag UserIdTag needs access to its body; this it can do by defining a doAfterBody()
method. This method will take the BodyContent and convert it into a String.
Then it will use the findAncestorWithClass() static method on Tag to locate the
enclosing connection tag instance and will set the desired userid information on
that object.

PasswordTag This Tag handler is equivalent to UserIdTag.

ConnectionTag This Tag handler provides methods to setUserId() and to setPassword() that
will be used by the enclosed actions; it also provides a getConnection() method
that on-demand computes the desired SQL connection. This tag handler needs
not be concerned with the body computation, but it will need to register the
SQL connection object with the pageContext object if an ID is provided.

ConnectionExtraInfo This class is identical to BarExtraInfo from a previous example.
Appendix 134

A.2.2 Query

The connection can now be used to make a query. The query element takes the body of the
tag and make a query on it. The result gets inserted in place

<x:query id="balances" connection="con01">
SELECT account, balance FROM acct_table
where customer_number = <%= request.getCustno()%>

</x:query>

The implementation highlights are:

Tag Library Descriptor Query has two mandatory attributes (in our example), and they are described as
so in the TLD. The TLD also associates QueryTag as the Tag handler class,
and QueryExtraInfo as the TagExtraInfo for the query tag.

QueryTag QueryTag needs access to its body; this it can do by defining a doAfterBody()
method. This method will take the BodyContent and convert it into a String.
Then it will use the PageContext object to locate an SQL connection that was
registered using the id that is the value to the connection attribute. The result
of the query will be registered in the PageContext with the value of the id
attribute as its name.

QueryExtraInfo This class is identical to BarExtraInfo from a previous example.

A.2.3 Iteration

Finally the query result can later be used to present the data by dynamically creating a series
of elements.

<x:foreach iterate="row" in="balances">
The balance for
account <%= row.getAccount()%> is <%= row.getBalance()%>
</x:foreach>

Unlike query and connection, the foreach element does not define a new object for later use
but it defines (and redefines) a "row" object that is accessible within its start and end tags.

The implementation of this tag requires the repeated evaluation of the body of the tag.

Tag Library Descriptor Foreach has two mandatory attributes (in our example), and they are described
as so in the TLD. The TLD also associates ForEachTag as the Tag handler
class, and ForEachExtraInfo as the TagExtraInfo for the foreach tag.
135 JavaServer Pages 1.1 Specification • November 30, 1999

ForEachTag.doStartTag() ForEachTag needs to define a doStartTag() method to extract the value of the in
and iterate attributes from the attribute values. The value of in ("balances" in
this example) is used to get at the result data. The value of iterate ("row" in
this example) is used as the key on which to store the iteration value.

The current value of the "out" variable is stored away so it can be used in
doBody(). This method returns EVAL_BODY so as to force the evaluation of
the body.

ForEachTag.doAfterBody() The BodyContent (obtained from getBodyContent()) contains the evaluation of
the body of the element where the evaluation has been done in a context where
the variable "row" is assigned the different rows of the query. This method
now inserts this content into the surrounding out stream (obtained from
getPreviousOut()).

This method now updates the binding of "row" and will return EVAL_BODY
or SKIP_BODY depending on whether there were any more rows in the result
set.

ForEachTag.doEndTag() Just clean up.

ForEachExtraInfo() The translation-time information indicates that this action defines a new
scripting variable, with scope NESTED and name corresponding to the value of
the "row" attribute.
Appendix 136

137 JavaServer Pages 1.1 Specification • November 30, 1999

APPENDIX B

Implementation Notes

This appendix provides implementation notes on the JSP technology. The notes are not
normative and should only reinforce information described elsewhere. In particular, smarter
but valid implementations are always welcome!

B.1 Delivering Localized Content
The definition in Section 2.7.4 enables but does not mandate the following implementation
strategy:

• Translate the JSP page into a Servlet class source using the character encoding of the JSP
page

• Compile the Servlet source using the -encoding switch. This produces a Servlet class file
that has a number of (probably static) Unicode strings.

• Run the Servlet with the JspWriter configured to generate output in the encoding of the
JSP page.

B.2 Processing TagLib directives
A strict 1-pass implementation would make custom actions visible only after their
corresponding taglib directive appears. But this semantics can lead to the situation where a
JSP page author is staring at a JSP page fragment with the assumption that a taglib directive
appears before, when it really is included after. The semantics of Section 2.7.7 are designed
to support an efficient implementation while minimizing JSP page author mistakes.
 138

An implementation can still work in a 1-pass manner; it only needs to remember all the
prefixes it has found and make the assumption that taglib directives appear before their use.
But, if it later discovers that a taglib directive is defining a prefix that was used previously
then it can cause a translation error.

B.3 Processing Tag Libraries
We describe some details of how to compile Tag Libraries and show an sketch of some code
implementing a JSP page.

B.3.1 Processing a Tag Library Descriptor

The tag library descriptor is read and information is extracted from it. Some of the actions to
be performed include:

• Record the mapping from tag to tag handler class

• Record the tag as a known to the JSP container so a taglib directive will introduce new
actions.

• Record information on what tags must have an empty body, to be checked on individual
pages later on.

• Record what are the valid attributes, and which ones can have request-time values.

• Record the TagExtraInfo classes, if any, associated with given tags,.

• Can be used to perform reflection on the tag handler classes to determine if the class
implements Tag or BodyTag

• Can be used to perform introspection on the tag handler classes to determine their
properties and their setter methods.

B.3.2 Processing a JSP page

When the JSP container processes a JSP page, it will perform analysis, validation, and
generation of code. Actions include:

• Validate that actions who must have an empty body do.

• Validate that the only attributes that appear are those indicated in the TLD.

• Validate that the only attributes with request-time values are those indicated in the TLD.
139 JavaServer Pages 1.1 Specification • November 30, 1999

• If there is a TagExtraInfo class associated in the TLD, a TagData object will be
created with the appropriate attribute/value entries, and will be passed to the isValid
method to determine if the attributes are valid.

• If there is a TagExtraInfo class associated in the TLD, a TagData object will be
created with the appropriate attribute/value entries, and will be passed to the
getVariableInfo method to determine if any scripting variables will be updated by
this action at request time.

B.3.3 Generating the JSP Page Implementation Class

The JSP page implementation class generated by the JSP container includes code that:

• Generate the appropriate setter method invocations to set values for attributes

• Reuse tag handlers that are not being used to reduce the number of tag handler creations.

• Assume that a tag handler object retains its set properties to reduce the number of method
invocations.

• Attempt to do some reorganization of setter method invocation so statically determined
properties are not reset on a tag handler unnecessarily.

B.3.4 An Example

We now describe a simple example.

B.3.4.1 JSP Page Example

We will use a JSP page fragment as follows, where "chunk" is some uninterpreted template
text
Appendix 140

.

For the example, we will assume the TLD and TagExtraInfo provides the information in
TABLE 2-1.

B.3.4.2 Implementation Code Fragment

The following code fragment can be used to implement the page fragment of FIGURE 2-1.

static {JspFactory _fact = JspFactory.getDefaultFactory();
}

_jspService(HttpServetRequest req, HttpServletResponse res) {

PageContext pc = _fact.getPageContext(...); // once
Object tempObject = null;
int tempReturn;

// just as an example, let’s initialize all the Tag handlers
FooTag footag = new FooTag();
BarTag bartag = new BarTag()
BazTag baztag = new BazTag();

JspWriter out = pageContext.getOut(); // the initial out

TABLE 2-1 TagInfo for the example

Tag Handler VariableInfo (name, type, scope)

foo FooTag myFoo, FooResult, AT_END

bar BarTag myBar, BarResult, AT_END

baz BazTag none

FIGURE 2-1 A JSP page fragment

chunk1
<x:foo id="myFoo" ...>

chunk2
<x:bar id="myBar" ...>

chunk3
</x:bar>
chunk4

</x:foo>
chunk5
<x:baz ref="myFoo" .../>
141 JavaServer Pages 1.1 Specification • November 30, 1999

// -- ditto for all other implicit objects

EVAL chunk1;

EVAL chunk5;

baztag.setPageContext(pc);
baztag.setParent(null);
baztag.setRef(“myFoo”);
try {

(void)baztag.doStartTag();
tempReturn = baztag.doEndTag();

} finally {
baztag.release();

}
if (tempReturn == SKIP_PAGE) {

goto endOfPage; // pseudo-code
};

endOfPage:
}

Where the evaluation of <foo>...</foo> is:

footag.setPageContext(pc);
footag.setParent(null);
footag.setId(“myFoo”);
try {

if (footag.doStartTag() == EVAL_BODY_TAG) {
try {

out = pc.pushBody();
foobag.setBodyContent(out);
footag.doInitBody();

repeat2:

EVAL chunk2;

EVAL chunk4;
if (footag.doAfterBody() == EVAL_BODY_TAG) {

goto repeat2; // pseudo-code
}

} finally {

Evaluate <x:foo>...</x:foo>

Evaluate <x:bar>...</x:bar>
Appendix 142

out = pc.popBody();
}

}
tempResult = footag.doEndTag();
tempObject = pc.getAttribute("myFoo");

} finally {
footag.release();

}
FooResult myFoo = (FooResult) tempObject;
if (tempResult == SKIP_PAGE) {

goto endOfPage; // pseudo-code
}

and the evaluation of <bar>...</bar> is essentially the same:

bartag.setPageContext(pc);
bartag.setParent(footag);
bartag.setId(“myBar”);

try {
if (bartag.doStartTag() == EVAL_BODY_TAG) {

try {
out = pc.pushBody();
bartag.setBodyContent(out);
bartag.doInitBody();

repeat3:

EVAL chunk3;

if (bartag.doAfterBody() == EVAL_BODY_TAG) {
goto repeat3; // pseudo-code

}
} finally {

out = pc.popBody();
}

}
tempResult = bartag.doEndTag();
tempObject = pc.getAttribute("myBar");

} finally {
bartag.release();

}
BarResult myBar = (BarResult) tempObject;
if (tempResult == SKIP_PAGE) {

goto endOfPage; // pseudo-code
}

143 JavaServer Pages 1.1 Specification • November 30, 1999

B.4 Implementing Buffering
Although the Servlet 2.2 specification provides for buffering, its semantics are
autoflush=true. Buffering could be done without using the Servlet buffered stream, but
this implementation does not allow for forwarding into a page that is not a JSP page. This is
problematic for the implementation of jsp:include actions (see Section 2.13.4) since the
goal is for jsp:include to be totally transparent to how the data is computed
dynamically. Due to this, the only semantics we can use at this point still remains "flush on
include" as it was in the JSP 1.0 specification.
Appendix 144

145 JavaServer Pages 1.1 Specification • November 30, 1999

APPENDIX C

Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a WAR for delivery
into a Web container. In the first example, the JSP page is delivered in source form. This is
likely to be the most common example. In the second example the JSP page is compiled into
a Servlet that uses only Servlet 2.2 and JSP 1.1 API calls; the Servlet is then packaged into a
WAR with a deployment descriptor such that it looks as the original JSP page to any client.

This appendix is non normative. Actually, strictly speaking, the appendix relates more to the
Servlet 2.2 capabilities to the JSP 1.1 capabilities. The appendix is included here as this is a
feature that JSP page authors and JSP page authoring tools are interested in.

C.1 A very simple JSP page
We start with a very simple JSP page HelloWorld.jsp.

<%@ page info="Example JSP pre-compiled" %>
<p>
Hello World
</p>

C.2 The JSP page packaged as source in a WAR
file
The JSP page can be packaged into a WAR file by just placing it at location "/
HelloWorld.jsp" the default JSP page extension mapping will pick it up. The
web.xml is trivial:
 146

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_1_2.dtd">

<webapp>
<session-config>

<session-timeout> 1 </session-timeout>
</session-config>

</webapp>

C.3 The Servlet for the compiled JSP page
As an alternative, we will show how one can compile the JSP page into a Servlet class to run
in a JSP container.

The JSP page is compiled into a Servlet with some implementation dependent name
_jsp_HelloWorld_XXX_Impl. The Servlet code only depends on the JSP 1.1 and
Servlet 2.2 APIs, as follows:

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

class _jsp_HelloWorld_XXX_Impl
extends_PlatformDependent_Jsp_Super_Impl {

public void _jspInit() {
// ...

}

public void jspDestroy() {
// ...

}
static JspFactory _factory = JspFactory.getDefaultFactory();

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

Object page = this;
HttpSession session = request.getSession();
ServletConfig config = getServletConfig();
ServletContext application = config.getServletContext();

PageContext pageContext
= _factory.getPageContext(this,
147 JavaServer Pages 1.1 Specification • November 30, 1999

request,
response,
(String)NULL,
true,
JspWriter.DEFAULT_BUFFER,
true
);

JspWriter out = pageContext.getOut();
// page context creates initial JspWriter "out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}
}

}

C.4 The Web Application Descriptor
The Servlet is made to look as a JSP page with the following web.xml:

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_1_2.dtd">

<webapp>
<servlet>

<servlet-name> HelloWorld </servlet-name>
<servlet-class> HelloWorld.class </servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> HelloWorld </servlet-name>
<url-pattern> /HelloWorld.jsp </url-pattern>

</servlet-mapping>

<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>
Appendix 148

C.5 The WAR for the compiled JSP page
Finally everything is packaged together into a WAR:

/WEB-INF/web.xml

/WEB-INF/classes/HelloWorld.class

Note that if the Servlet class generated for the JSP page had dependent on some support
classes, they would have to be included in the WAR.
149 JavaServer Pages 1.1 Specification • November 30, 1999

APPENDIX D

Future

This appendix provides some information on future directions of the JSP technology.

D.1 Meta-Tag Information
A tag extension mechanism can include information:

• To execute a JSP page that uses the tag library.

• To edit a JSP page.

• To present the JSP page to the end user.

The JSP 1.1 specification concentrates on the first type of information providing some small
amount of the other type of information; future specifications may address the other pieces.

D.2 Standard Tags
The tag extension mechanism enables the creation of tag libraries; some application domains
have widespread applicability and there is substantial interest in defining standard tags for
these domains.

D.3 Additional Application Support
We are investigating the benefits and costs of adding additional support for applications into
the JSP specification.
 150

D.4 JSP, XML and XSL Technologies
The JSP 1.0 and JSP 1.1 specification started in the direction of XML representations of JSP
pages. At the time of the design of the JSP 1.0 and JSP 1.1 specifications the Java platform
was lacking on APIs for the manipulation of XML documents; this deficiency is being
corrected and we expect to exploit the interaction of XML and JSP technologies more fully
in future specifications.
151 JavaServer Pages 1.1 Specification • November 30, 1999

APPENDIX E

Changes

This appendix lists the changes in the JavaServer Pages specification.

E.1 Changes between 1.1 PR2 and 1.1 final

E.1.1 Changes
• Updated the license.

• Consistent use of the JSP page, JSP container, and similar terms. Some other minor
editorial changes.

• Clarified the return values of the methods in the TagSupport and BodyTagSupport
classes.

• Normalized the throws clause in the methods in Tag, BodyTag, TagSupport and
BodyTagSupport. These methods now throw JspException.

• Added a missing throws IOException to the writeOut() method in
BodyContent.

• Renamed JspError to JspTagException.

• The getTagId() and setTagId() methods in TagSupport were renamed to
getId() and setId() to be consistent with the switch to properties.

• Spelled out some consequences of (the unchanged) specification that flush() on
BodyContent raises an exception.

• Clarified the interpretation of the uri attribute in the taglib directive.
 152

odel

rom

 of

n

.

ions
1.dtd

tag

it may

E.2 Changes between 1.1 PR1 and PR2

E.2.1 Additions
• Added a Glossary as Appendix F.

• Normalized use of Container and Component terminology; including changing the name
of Chapter 3.

• Described the relationship of this specification to the Servlets and J2EE specifications.

• Expanded on some of the organizational models in Chapter 1 so as to cover 0.92’s "m
1" and "model 2".

• Expanded Section 2.7.2 to summarize the implications of threading and distribution f
the Servlet spec and to define the notion of a distributable JSP page.

• Added a description of how to package a JSP page within a WAR; changed the title
Appendix C to reflect the new material.

E.2.2 Changes
• A tag handler is now a JavaBean component; attributes are properties that have bee

explicitly marked as attributes in the TLD.

• The type subelement of attribute in the TLD is now defined by the type of the
corresponding JavaBean component property, and has been removed from the TLD

• Clarified implicit import list in Section 2.7.1. Clarified details on Section 2.12.1,
Section 2.13.6 and Section 3.4.2.

• The names of the DTDs have changed to reflect that the JSP and Servlet specificat
have a separate release vehicle to J2EE. The new names are web-jsptaglibrary_1_
and web-app_2_2.dtd.

• Decomposed the Tag abstract class into two interfaces and two support classes.

• Adjusted the semantics of the uri attribute in taglib, and the mechanism by which a
library descriptor is located.

• Normalized the terminology on the Tag Extension mechanism.

• Indicated that a "compiled" JSP page should be packaged with any support classes
use.

• BodyJspWriter is now BodyContent to clarify its meaning; this is similar to the PD
name. The name BodyJspWriter was confusing some readers.

• Corrected implementation examples to show how a JSP page implementation class
invokes getDefaultFactory only statically.
153 JavaServer Pages 1.1 Specification • November 30, 1999

• Reorganized the material in Section B.3 for accuracy and presentation.

E.3 Changes between 1.1 PD1 and PR1

E.3.1 Additions
• Added a Tag Library Descriptor (TLD) file

• Added parameters to jsp:include and jsp:forward..

• Added JspException and JspError classes.

• Added a parent field to the Tag class to provide a runtime stack.

• Added pushBody() and popBody() to PageContext.

• Added appendix with an example of compiling a simple JSP page into a Servlet that is
delivered within a WAR

• Upgraded the javadoc documentation

• Upgraded all the examples.

• Added a precompilation protocol.

• Reserved all request parameters starting with "jsp".

E.3.2 Changes
• Most Info classes are not to be subclassed; instead their information is now derived

completely from the TLD file; TagExtraInfo is the exception.

• BodyEvaluation is now called BodyJspWriter and it is a subclass of JspWriter.

• Tag is now an abstract class; TagSupport has been removed. NodeData is now called
TagData.

• Split doBody() into doBeforeBody() and doAfterBody() to simplify
programming.

• The semantics of the nested JspWriter have changed: now there is only at most one
BodyJspWriter per invocation of the action, regardless of how many times the body is
evaluated.

• Return type of doStartTag() is now an int for better documentation and ease of
extensibility.

• Added initialize() and release() methods to Tag class; clarified life-cycle
requirements.
Appendix 154

• Substantial cleanup of presentation; revisions to many classes.

E.3.3 Deletions
• Removed the ChildrenMap mechanism.

• Removed the flush="false" option in jsp:include as it cannot be implemented on
Servlet 2.2.

• Removed the proposal for a standard Servlet tag for now. Will probably be available in a
"utils" tag library.

E.4 Changes between 1.0 and 1.1 PD1
The JSP 1.1 specification builds on the JSP 1.0 specification.

E.4.1 Additions
• Enabled the compilation of JSP pages into Servlet classes that can be transported from

one JSP container to another.

• Added a portable tag extension mechanism.

• Flush is now an optional attribute of jsp:include, and a false value is valid and the default.

E.4.2 Changes
• Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B); Servlet 2.2 is still

being finalized, but the specification is intended to be upward compatible.

• jsp:plugin no longer can be implemented by just sending the contents of
jsp:fallback to the client.

E.4.3 Removals
• None so far.
155 JavaServer Pages 1.1 Specification • November 30, 1999

APPENDIX F

Glossary

This appendix is a glossary of the main concepts mentioned in this specification.

action An element in a JSP page that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for elements
with a start tag, a body and an end tag; if the body is empty it can also use the empty
tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always available to a JSP file
without being imported.

action, custom An action described in a portable manner by a tag library descriptor and a collection of
Java classes and imported into a JSP page by a taglib directive.

Application Assembler A person that combines JSP pages, servlet classes, HTML content, tag libraries, and
other Web content into a deployable Web application.

component contract The contract between a component and its container, including life cycle management
of the component and the APIs and protocols that the container must support.

Component Provider A vendor that provides a component either as Java classes or as JSP page source.

distributed container A JSP container that can run a Web application that is tagged as distributable and is
spread across multiple Java virtual machines that might be running on different hosts.

declaration An scripting element that declares methods, variables, or both in a JSP page.
Syntactically it is delimited by the <%! and %> characters.

directive An element in a JSP page that gives an instruction to the JSP container and is
interpreted at translation time. Syntactically it is delimited by the <%@ and %>
characters.

element A portion of a JSP page that is recognized by the JSP translator. An element can be a
directive, an action, or a scripting element.

expression A scripting element that contains a valid scripting language expression that is
evaluated, converted to a String, and placed into the implicit out object.
Syntactically it is delimited by the <%= and %> characters
 156

fixed template data Any portions of a JSP file that are not described in the JSP specification, such as
HTML tags, XML tags, and text. The template data is returned to the client in the
response or is processed by a component.

implicit object A server-side object that is defined by the JSP container and is always available in a
JSP file without being declared. The implicit objects are request, response,
pageContext, session, application, out, config, page, and exception.

JavaServer Pages
technology An extensible Web technology that uses template data, custom elements, scripting

languages, and server-side Java objects to return dynamic content to a client. Typically
the template data is HTML or XML elements, and in many cases the client is a Web
browser.

JSP container A system-level entity that provides life cycle management and runtime support for JSP
and Servlet components.

JSP file A text file that contains a JSP page. In the current version of the specification, the JSP
file must have a .jsp extension.

JSP page A text-based document that uses fixed template data and JSP elements and describes
how to process a request to create a response. The semantics of a JSP page are realized
at runtime by a JSP page implementation class.

JSP page, front A JSP page that receives an HTTP request directly from the client. It creates, updates,
and/or accesses some server-side data and then forwards the request to a presentation
JSP page.

JSP page, presentation A JSP page that is intended for presentation purposes only. It accesses and/or updates
some server-side data and incorporates fixed template data to create content that is sent
to the client.

JSP page implementation
class The Java programming language class, a Servlet, that is the runtime representation of a

JSP page and which receives the request object and updates the response object. The
page implementation class can use the services provided by the JSP container,
including both the Servlet and the JSP APIs.

JSP page implementation
object The instance of the JSP page implementation class that receives the request object and

updates the response object.

scripting element A declaration, scriptlet, or expression, whose tag syntax is defined by the JSP
specification, and whose content is written according to the scripting language used in
the JSP page. The JSP specification describes the syntax and semantics for the case
where the language page attribute is "java".

scriptlet An scripting element containing any code fragment that is valid in the scripting
language used in the JSP page. The JSP specification describes what is a valid
scriptlet for the case where the language page attribute is "java". Syntactically a
scriptlet is delimited by the <% and %> characters.
157 JavaServer Pages 1.1 Specification • November 30, 1999

tag A piece of text between a left angle bracket and a right angle bracket that has a name,
can have attributes, and is part of an element in a JSP page. Tag names are known to
the JSP translator, either because the name is part of the JSP specification (in the case
of a standard action), or because it has been introduced using a Tag Library (in the case
of custom action).

tag handler A JavaBean component that implements the Tag or BodyTag interfaces and is the
run-time representation of a custom action.

tag library A collection of custom actions described by a tag library descriptor and Java classes.

tag library descriptor An XML document describing a tag library.

Tag Library Provider A vendor that provides a tag library. Typical examples may be a JSP container vendor,
a development group within a corporation, a component vendor, or a service vendor
that wants to provide easier use of their services.

Web application An application built for the Internet, an intranet, or an extranet.

Web application,
distributable A Web application that is written so that it can be deployed in a Web container

distributed across multiple Java virtual machines running on the same host or different
hosts. The deployment descriptor for such an application uses the distributable
element.

Web Application
Deployer A person who deploys a Web application in a Web container, specifying at least the

root prefix for the Web application, and in a J2EE environment, the security and
resource mappings.

Web component A servlet class or JSP page that runs in a JSP container and provides services in
response to requests.

Web Container
Provider A vendor that provides a servlet and JSP container that support the corresponding

component contracts.
Chapter 158

	Contents
	Chapter 1: Overview 18
	Chapter 2: Standard Syntax and Semantics 34
	Chapter 3: The JSP Container 72
	Chapter 4: Scripting 82
	Chapter 5: Tag Extensions 86
	Chapter 6: JSP Technology Classes 114
	Chapter 7: JSP Pages as XML Documents 124
	Appendix A: Examples 132
	Appendix B: Implementation Notes 138
	Appendix C: Packaging JSP Pages 146
	Appendix D: Future 150
	Appendix E: Changes 152
	Appendix F: Glossary 156

	Preface
	Who should read this document
	Related Documents

	Overview
	1.1 The JavaServer Pages™ Technology
	1.2 What is a JSP Page?
	An Example Using Scripting and Beans
	An Example Using a Tag Library
	Components and Containers

	1.3 Features in JSP 1.1
	1.4 Overview of JSP Page Semantics
	1.4.1 Translating and Executing JSP Pages
	1.4.2 Compiling JSP Pages
	1.4.3 Objects and Scopes
	1.4.4 Fixed Template Data
	1.4.5 Directives and Actions
	Tag Extension Mechanism

	1.4.6 Scripting Languages
	1.4.7 Objects and Variables
	1.4.8 Scripts, Actions, and Beans
	1.4.9 JSP, HTML, and XML

	1.5 Web Applications
	1.6 Application Model
	1.6.1 Simple 21/2-Tier Application
	1.6.2 N-tier Application
	1.6.3 Loosely Coupled Applications
	1.6.4 Using XML with JSP Technology
	1.6.5 Redirecting Requests
	Presentation JSP pages and Front JSP pages

	1.6.6 Including Requests

	Standard Syntax and Semantics
	2.1 General Syntax Rules
	2.1.1 Elements and Template Data
	2.1.2 Element Syntax
	2.1.3 Start and End Tags
	2.1.4 Empty Elements
	2.1.5 Attribute Values
	2.1.6 White Space

	2.2 Error Handling
	2.2.1 Translation Time Processing Errors
	2.2.2 Client Request Time Processing Errors

	2.3 Comments
	Generating Comments in Output to Client
	JSP Comments

	2.4 Quoting and Escape Conventions
	Quoting in Scripting Elements
	Quoting in Template Text
	Quoting in Attributes
	XML Representation

	2.5 Overview of Semantics
	2.5.1 Web Applications
	2.5.2 Relative URL Specifications within an Application
	2.5.3 Web Containers and Web Components
	2.5.4 JSP Pages

	2.6 Template Text Semantics
	2.7 Directives
	2.7.1 The page Directive
	Examples
	2.7.1.1 Syntax

	2.7.2 Synchronization Issues
	2.7.3 Specifying Content Types
	2.7.4 Delivering Localized Content
	2.7.5 Including Data in JSP Pages
	2.7.6 The include Directive
	Examples
	2.7.6.1 Syntax

	2.7.7 The taglib Directive
	Examples
	2.7.7.1 Syntax

	2.8 Implicit Objects
	2.9 The pageContext Object
	2.10 Scripting Elements
	2.10.1 Declarations
	Examples
	Syntax

	2.10.2 Scriptlets
	Examples
	Syntax

	2.10.3 Expressions
	Examples
	Syntax

	2.11 Actions
	2.12 Tag Attribute Interpretation Semantics
	2.12.1 Request Time Attribute Values
	2.12.2 The id Attribute
	2.12.3 The scope Attribute

	2.13 Standard Actions
	2.13.1 <jsp:useBean>
	Examples
	2.13.1.1 Syntax

	2.13.2 <jsp:setProperty>
	Examples
	2.13.2.1 Syntax

	2.13.3 <jsp:getProperty>
	Examples
	2.13.3.1 Syntax

	2.13.4 <jsp:include>
	Examples
	2.13.4.1 Syntax

	2.13.5 <jsp:forward>
	Examples
	2.13.5.1 Syntax

	2.13.6 <jsp:param>
	2.13.6.1 Syntax

	2.13.7 <jsp:plugin>
	Examples
	2.13.7.1 Syntax

	The JSP Container
	3.1 The JSP Page Model
	The Protocol Seen by the Web Server
	The Protocol Seen by the JSP Page Author
	The HttpJspPage Interface

	3.2 JSP Page Implementation Class
	3.2.1 API Contracts
	3.2.2 Request and Response Parameters
	3.2.3 Omitting the extends Attribute
	3.2.4 Using the extends Attribute

	3.3 Buffering
	3.4 Precompilation
	3.4.1 Request Parameter Names
	3.4.2 Precompilation Protocol

	Scripting
	4.1 Overall Structure
	Valid JSP Page
	Implementation Flexibility

	4.2 Declarations Section
	4.3 Initialization Section
	4.4 Main Section

	Tag Extensions
	5.1 Introduction
	5.1.1 Goals
	5.1.2 Overview
	Simple Actions
	Actions with Body
	Cooperating Actions
	Actions Defining Scripting Variables

	5.1.3 Examples
	5.1.3.1 Call Functionality, no Body
	5.1.3.2 Call Functionality, No Body, Define Object
	5.1.3.3 Call Functionality, Define Object by Scope
	5.1.3.4 Template Mechanisms
	5.1.3.5 An HTML quoting action
	5.1.3.6 A useBean as in the JSP 0.92 specification

	5.2 Tag Library
	5.2.1 Packaged Tag Libraries
	5.2.2 Location of Java Classes
	5.2.3 Tag Library directive

	5.3 Tag Library Descriptor
	5.3.1 Locating a Tag Library Descriptor
	5.3.1.1 Taglib map in web.xml
	taglib
	taglib-uri
	taglib-location
	Example

	5.3.1.2 Default location
	Example

	5.3.2 Translation-Time Class Loader
	5.3.3 Assembling a Web Application
	5.3.4 Well-Known URIs
	5.3.5 The Tag Library Descriptor Format
	Notation
	taglib
	tlibversion
	jspversion
	shortname
	uri
	info
	tag
	tagclass
	teiclass
	bodycontent
	attribute
	name
	required
	rtexprvalue

	5.4 Tag Handlers
	5.4.1 Properties
	5.4.2 Basic Protocol: Tag Interface
	Properties
	Methods
	Simple Actions with non-empty Bodies

	5.4.3 The TagSupport Base Class
	5.4.4 Body Protocol: BodyTag Interface
	Properties
	Methods

	5.4.5 The BodyContent Class
	5.4.6 The BodyTagSupport Base Class
	5.4.7 Life-Cycle Considerations
	An Execution Trace

	5.5 Scripting Variables
	5.6 Cooperating Actions
	5.6.1 Ids and PageContext.
	5.6.2 Run-Time Stack

	5.7 Validation
	5.7.1 Syntactic Information on the TLD
	5.7.2 Syntactic Information in a TagExtraInfo Class
	5.7.3 Raising an Error at Action Time

	5.8 Conventions and Other Issues
	5.8.1 How to Define New Implicit Objects
	5.8.2 Access to Vendor-Specific information
	5.8.3 Customizing a Tag Library

	JSP Technology Classes
	6.1 Package javax.servlet.jsp
	6.1.1 JspPage and HttpJspPage
	6.1.2 JspWriter
	6.1.3 JspException and JspError
	6.1.4 PageContext
	6.1.4.1 Creation
	6.1.4.2 Usage
	Uniform Access to Multiple Scopes
	Access to Implicit Objects
	Management of Nested Scopes
	Management of PageContext Object
	Forward and Includes

	6.1.5 JspEngineInfo
	6.1.6 JspFactory

	6.2 Package javax.servlet.jsp.tagext

	JSP Pages as XML Documents
	7.1 Why an XML Representation
	7.2 Document Type
	7.2.1 The jsp:root Element
	7.2.2 Public ID

	7.3 Directives
	7.3.1 The page directive
	Example

	7.3.2 The include Directive
	Examples

	7.3.3 The taglib Directive

	7.4 Scripting Elements
	7.4.1 Declarations
	DTD Fragment

	7.4.2 Scriptlets
	DTD Fragment

	7.4.3 Expressions
	DTD Fragment

	7.5 Actions
	7.6 Transforming a JSP Page into an XML Document
	7.6.1 Quoting Conventions
	7.6.2 Request-Time Attribute Expressions

	7.7 DTD for the XML document

	Examples
	A.1 Simple Examples
	A.1.1 Call Functionality, no Body
	A.1.2 Call Functionality, No Body, Define Object
	A.1.3 Template Mechanisms
	A.1.4 A 0.92-like useBean

	A.2 A Set of SQL Tags
	A.2.1 Connection, UserId, and Password
	A.2.2 Query
	A.2.3 Iteration

	Implementation Notes
	B.1 Delivering Localized Content
	B.2 Processing TagLib directives
	B.3 Processing Tag Libraries
	B.3.1 Processing a Tag Library Descriptor
	B.3.2 Processing a JSP page
	B.3.3 Generating the JSP Page Implementation Class
	B.3.4 An Example
	B.3.4.1 JSP Page Example
	B.3.4.2 Implementation Code Fragment

	B.4 Implementing Buffering

	Packaging JSP Pages
	C.1 A very simple JSP page
	C.2 The JSP page packaged as source in a WAR file
	C.3 The Servlet for the compiled JSP page
	C.4 The Web Application Descriptor
	C.5 The WAR for the compiled JSP page

	Future
	D.1 Meta-Tag Information
	D.2 Standard Tags
	D.3 Additional Application Support
	D.4 JSP, XML and XSL Technologies

	Changes
	E.1 Changes between 1.1 PR2 and 1.1 final
	E.1.1 Changes

	E.2 Changes between 1.1 PR1 and PR2
	E.2.1 Additions
	E.2.2 Changes

	E.3 Changes between 1.1 PD1 and PR1
	E.3.1 Additions
	E.3.2 Changes
	E.3.3 Deletions

	E.4 Changes between 1.0 and 1.1 PD1
	E.4.1 Additions
	E.4.2 Changes
	E.4.3 Removals

	Glossary

