
Wikipedia and Google Map Mashup

Summary

This project builds a Web-application prototype for showing surrounding interest points
of universities and colleges in Texas using Google Map, Wikipedia and possibly other
resources. Users select a university in Texas from the application to view surrounding
points of interest as stored in Wikipedia. The results are displayed through Google Map.
A pop-up box shows information about the point of interest when the mouse is on top of
it. The information includes a link to the Wikipedia article of the interest point.

Goals

This project exposes students to Web 2.0 Mashup development. It familiarizes students
with many modern Web development concepts, techniques and issues, including Mashup,
APIs, AJAX, XML, Resource Description Framework (RDF), ontology, semantic Web,
data cleaning and preparation, human computer interface (HCI), etc. It also utilizes
contents and APIs from two of the top ten Websites: Wikipedia and Google.

Technical Information

The team will have some flexibility to drive the development direction of the prototype.
Parts of the job of the team will be the specification of a set of requirements with enough
details. Bare-bone minimum requirements are elaborated below and they must be
satisfied. However, the mentor expects the team to go beyond the minimum requirements.

1. Ontology with Wikipedia

Contents of Wikipedia (http://en.wikipedia.org/wiki/Main_Page) will be needed for this
project. Wikipedia’s entries are written in a relatively free format. Thus, basic
information, including geo-code (the longitude and latitude of a location), must be
extracted.

Dbpedia (http://dbpedia.org/About) is a community effort to extract structured
information from Wikipedia. Extracted information is stored in Resource Description
Framework (RDF), which is XML compliant. RDF information can be queried by a
querying language called SPARQL.

For efficiency, Dbpedia data can be downloaded and stored in a server. A SPARQL
engine can then be installed to query the RDF data.

Dbpeida also have a Web front end SPARQL engine at http://dbpedia.org/snorql/.

As an example, here is the SPARQL code for finding all Wikipedia’s ‘things’ with a geo-
code that is off by 0.05 or less in both longitude and latitude with respect to the
“University of Houston”:

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
SELECT ?subject ?label ?lat ?long WHERE {
<http://dbpedia.org/resource/University_of_Houston> geo:lat ?uhLat.
<http://dbpedia.org/resource/University_of_Houston> geo:long ?uhLong.
?subject geo:lat ?lat.
?subject geo:long ?long.
?subject rdfs:label ?label.
FILTER(xsd:float(?lat) - xsd:float(?uhLat) <= 0.05 && xsd:float(?uhLat) - xsd:float(?lat)
<= 0.05 &&
xsd:float(?long) - xsd:float(?uhLong) <= 0.05 && xsd:float(?uhLong) - xsd:float(?long) <=
0.05 &&
lang(?label) = "en"
).
} LIMIT 20

Running through Dbpeida’s SPARQL front end with XML output:

Dbpeida’s SPARQL front end returns XML data:

<table class="sparql" border="1">
 <tr>
 <th>subject</th>
 <th>label</th>
 <th>lat</th>
 <th>long</th>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/The_Orange_Show</td>
 <td>The Orange Show</td>
 <td>29.71769142150879</td>
 <td>-95.32426452636719</td>

 </tr>
 <tr>
 <td>http://dbpedia.org/resource/University_of_Houston</td>
 <td>University of Houston</td>
 <td>29.71892166137695</td>
 <td>-95.33916473388672</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Robertson_Stadium</td>
 <td>Robertson Stadium</td>
 <td>29.72200012207031</td>
 <td>-95.34928131103516</td>
 </tr>
 <tr>

<td>http://dbpedia.org/resource/University_of_Houston_College_of_Techno
logy</td>
 <td>University of Houston College of Technology</td>
 <td>29.72327995300293</td>
 <td>-95.3426513671875</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Hofheinz_Pavilion</td>
 <td>Hofheinz Pavilion</td>
 <td>29.72468948364258</td>
 <td>-95.34700775146484</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Cougar_Field</td>
 <td>Cougar Field</td>
 <td>29.72669982910156</td>
 <td>-95.34519958496094</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Houston%2C_Texas</td>
 <td>Houston, Texas</td>
 <td>29.75</td>
 <td>-95.34999847412109</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Toyota_Center_%28Houston%29</td>
 <td>Toyota Center (Houston)</td>
 <td>29.75072479248047</td>
 <td>-95.36211395263672</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Discovery_Green</td>
 <td>Discovery Green</td>
 <td>29.75250053405762</td>
 <td>-95.35861206054688</td>
 </tr>
 <tr>
 <td>http://dbpedia.org/resource/Minute_Maid_Park</td>
 <td>Minute Maid Park</td>
 <td>29.75684356689453</td>
 <td>-95.35541534423828</td>
 </tr>

 <tr>
 <td>http://dbpedia.org/resource/Wells_Fargo_Bank_Plaza</td>
 <td>Wells Fargo Bank Plaza</td>
 <td>29.7584400177002</td>
 <td>-95.36826324462891</td>
 </tr>
 <tr>

<td>http://dbpedia.org/resource/JPMorgan_Chase_Tower_%28Houston%29</td>
 <td>JPMorgan Chase Tower (Houston)</td>
 <td>29.76055526733398</td>
 <td>-95.3638916015625</td>
 </tr>
</table>

For the bare-bone minimum, your application should include a component to obtain the
points of interest close to a selected university from Dbpeida SPARQL front end. The
team is encouraged to actually download and store the appropriate Dbpedia dataset in the
server for added efficiency. However, the team will then need to address the data
synchronization issues.

2. Data Preparation and Cleaning

The quality of data of Wikipedia cannot be perfect. It has both completeness and
correctness issues. For example, it does not store the geo-code of the University of
Houston-Clear Lake.

The list of the Texas universities and colleges may not be complete in Wikipedia and
information may be missing. This is especially the case for the geo-codes.

Thus, the team needs to construct a high quality list of Texas universities. It needs to
research resources to be combined with Wikipedia to form such a list and mechanisms for
combining the resources.

The team will also need to find a way to obtain accurate Geo-codes for all universities
from Wikipedia as well as other sources. There are many ways to do so. Here is an
example that can be entirely automated.

(1) Find the address of the university from Wikipedia or other sources. E.g. “2700
Bay Area Boulevard, Houston, TX 77058”.

(2) Submit this address to one of the many Web based or standalone geo-coders, such
as: http://geocoder.us/.

In this case, we have:

The site returns something like:

(3) Geo-code information can then be extracted.

The provided example is not too good. For one thing, you can use the service only once
per 15 seconds. Another reason is its return of HTML, not XML, making extraction
inefficient and brittle. See http://geocoder.us/help/ for RDF and better output format.

Your design and implementation should be flexible and extensible. The way you work
with university lists and geo-codes should be applicable to libraries and hospitals, for
examples.

3. Display

The display should be via Google Map API (http://code.google.com/apis/maps/). More
specifically, the AJAX API is required. AJAX is one of the backbone of Web 2.0. Note
that you will need to obtain a key first.

In the bare-bone minimum, there should be an easy way for the users to select a Texas
university. A Google map should then show up with the university and surrounding
points of interest. When the mouse is on top of a point of interest, a pop-up box displays
relevant information, including al link to the point of interest in Wikipedia.

There are hundreds of ways the team can improve on the bare-bone minimum. Use your
imagination.

