2.
Goals and Objectives

The long-term goal of this project is to enhance the collaborative development of content complete and rich, high quality, and freely distributed open courseware materials that can easily be selected by instructors to compose their courses or used by students directly.

The objectives of the project are:

a) Based on the successful open source software (OSS) development model, develop a unit-based prototype model for collaborative open courseware (COC) development to support diverse instructional and learning needs.

b) Develop a prototype COC community Website (COC site) that serves as a central repository for supporting COC projects, distributing COC resources, and fostering COC community.

c) Using the COC site, develop at least two courseware projects as test cases of the COC development model.

d) Disseminate results to fellow educators, instructors and researchers. This is especially important to this project as the eventual success of the COC model depends on its widespread recognition and adoption.

e) Use experiences learned from the prototype site and the test cases to develop plans and proposals for the full development of the COC model and site. Eventually, the full COC model and site will be refined and developed to be self-sustainable.

3.
Detailed Project Plan

3.1 Background

The advance of the Web has already significantly changed how course materials are developed, improved and shared. An instructor developing a course can usually find many relevant resources in the Web. However, these resources are usually scattered throughout the Web, unstructured and of inconsistent quality, and sometimes have copyrights prohibiting their adoption by other people.

A central repository of high quality, content complete and rich, and freely distributed courseware materials for instructors to compose their own courses is a critical factor for the success of many courses for any subject and level. Courseware materials on a topic may include artifacts such as lecture notes, examples, case studies, laboratory assignments, homework assignments, glossary, resource links, etc. Instructors offering courses on the topic can then “pick and mix” appropriate artifacts to custom design and develop their own courses.

 More and more universities have begun to put entire courses in the Web for free access, which is an important trend of e-learning that is suggested by many observers as one of the next “big things” on the Internet. Most open courseware (OC) has a free copyright policy and allows other instructors to copy and adapt its contents [Baladi 2002, NCSU]. Highlighting this important trend was the announcement of the MIT Open CourseWare project in 2001 to put every MIT course in the Web for free distribution by 2007 [MIT, Baladi 2002].

Whereas the advantages of OC have been established [MIT, Baladi 2002], the current breed of OC focuses on the free distribution licensing aspect of the courseware, not on how the courseware are developed in the first place [Baladi 2002]. In fact, coursewares are usually developed by a few authors within the same organization with a low degree of collaboration. This is in contrast with successful open source software (OSS) development projects, such as Linux and Apache, where a high degree of collaboration between numerous developers is used to ensure quality, richness and efficiency. Tim O’Reilly captured this with the observation “Open source is about collaboration, not just about software licensing.” [O’Reilly 2000]. Eugene Kim pointed out that OSS communities are “one of the most successful … examples of high-performance collaboration and community-building in the Internet today.” [Kim 2003].

Most efforts in collaborative open courseware (COC) development, such as MIT’s Open Knowledge Initiative (OKI) [OKI], the Sharable Content Object Reference Model (SCORM) of the Advanced Distributed Learning (ADL) [SCORM], and the framework proposed by the Enabling the Provision of Open Courseware group (EPOC) [EPOC], have focused on promoting interoperability of courseware and the accompanying ontological issues. Courseware developed using these frameworks will be easier to integrate and manage. However, these projects do not include a model to foster a COC community for high performance collaboration through the Web in which to satisfy the following needs. (1) Given the huge amount of courseware to be developed across various disciplines, it is unlikely that any single organization would be able to allocate all the necessary resources to accomplish the mission on its own. On the other hand, large numbers of educators and researchers in different organizations are developing their own courseware with no coordination between each other. A model bringing these instructors together in a COC community to create a rich and complete collection of course materials will satisfy the tremendously diverse needs of different organizations, instructors and students. (2) Each instructor has his own preferences for constructing his courses to accommodate the needs, strength, experience and background of his students and himself. Even for the same instructor of the same course, he may need different materials, such as assignments, in different semesters. Moreover, it is well known that different students are receptive to different styles of instructional materials. Therefore, content richness, or the abundance of diverse courseware materials, is critical to effectively support the diverse needs of instructors and students. A single set of teaching materials developed by a low degree of collaboration, no matter how carefully it is designed, could not satisfy such diverse needs.

The importance of high collaboration is also proved in OSS. As high profile successes such as Linux and Apache become well known, OSS has already been considered as a cornerstone of modern software development. For example, SourceForge.net, the largest OSS development Website, currently hosts more than 61,000 OSS projects with 620,000 members and has successfully fostered a vibrant OSS community [SourceForge.net]. The success of OSS has attracted attention and research interests, and its development model has become well understood [McPhee, Cubranic 1999, Raymond 2000, Kim 2003].

The model of OSS is relatively simple. Interested parties set up projects in an OSS Website such as SourceForge.net, which works as a central repository to provide visibility (to attract users and volunteers), project management tools (such as team management software, and bug and feature management software) and software support (such as compile farm and CVS). The project leader is responsible for the whole project, including setting up the core team, analyzing and designing the software, dividing the development into components, and inviting and managing volunteers for developing the software components. Communications within the team are done efficiently through email, forum, instant messaging, etc. Despite providing no direct financial rewards, OSS has successfully attracted a tremendous number of talented volunteers. Kim reported that the top five reasons for joining OSS are “learn and develop new skills,” “share knowledge and skills,” “participate in a new form of cooperation,” “improve open source products of other developers,” and “think that software should not be a proprietary good”[Kim 2003]. Among the thirteen reasons reported by Kim, many of them will be equally appealing to a similar COC model. In fact, Dr. Nasir Memon of Polytechnic University pointed out in his letter of support for this project that “…the large amount of free courseware that is often found on the web in the form of lecture notes, slides, and examinations is a strong encouragement that once an appropriate development model is provided, there will be plenty of volunteers who will contribute high quality content to the project.”

Dr. Memon also strongly supported the merit of the project: “it is a wonderful idea to create a repository of high-quality and copyright-free courseware and make it available for instructors to adapt to their own courses. Teachers of various subjects at varying levels can greatly benefit from such a repository. The existence of such a repository will foster the development of am abundance of open courseware, which provide a major boost to the nation-wide educational resources.”

3.2
Technical Approach

Our technical approach is to adapt the successful OSS model and refine it for COC development. A brief sketch of our unit-based COC model follows. The COC model is composed of three major components: structure, content and courses. Figure 1.a shows the COC architecture, including the structure (unit), the content (artifact), the course, and their respective relationships.

	[image: image1.png]o

et
ox Uit
supermit o ox
o
e Course
o ox
ArtiFact

o

1.a Top Level COC Class Diagram
	[image: image2.png]Topic

Sib-Modle

1.b The Top Three Levels

of Units

Figure 1. COC’s Architecture

The structure of a COC project contains units and their relationship. A unit covers a body of knowledge and contains artifacts that can be used to construct courses. A super-unit may recursively contain other sub-units. A sub-unit may belong to many super-units. For ease of references, units of the top three levels are called topics (e.g., computer security), modules (e.g., malicious code) and sub-modules (e.g., virus), respectively, as illustrated in Figure 1.b. Each COC project covers exactly one topic. A topic can be used to compose many courses. For an example, a large topic such as computer security can be used to construct many courses covering a computer security program. This structure provides a systematic way for planning, designing and developing a complete coverage of a topic, as well as searching the topic for appropriate sub-units for course composition.

The content of a project is composed of artifacts, which are atomic content entities. Examples of artifacts are objectives and goals for a unit, lecture notes, examples, case studies, project assignments, homework assignments, resources, supporting software, etc. An artifact is independent of any unit and may be included in different units. An example is the Love Letter virus, which may be applicable to the units “virus,” “social issues of computer security,” “security protection,” etc.

Instructors can use COC structures (units) and contents (artifacts) to compose their courses. A course contains a selection of units and artifacts. Besides unit-related artifacts, there are also course-related artifacts, such as course goals, schedules, additional homework, resources, experience, etc. Instructors may post their sample courses in the COC site for the references of other instructors as well.

An interested party may start a project using the COC site. The project’s workgroup (WG), which may contain as few as one person, is responsible for the management of the entire project, including defining the project structures, identifying artifacts to be developed, and recruiting and managing developers. Similar to OSS, volunteers can contribute by playing one or several of the roles listed in Table 1.

	Roles
	Responsibility

	Workgroup members
	Manage the project

	Developers
	Develop selected artifacts

	Instructors
	Post sample courses and related experience

	Regular users
	· Use units, artifacts and courses

· Request new units and artifacts

· Report error and user experience

Table 1. COC Volunteer’s roles and responsibilities

Similar to those identified by Kim for OSS [Kim 2003], several major design goals are critical for the success of our COC model:

a) A vibrant supporting community

b) Low cost of entry

c) Quality assurance of courseware contents

d) A reasonable system to reward volunteers (non-financially)

Having a low cost to start a new project is especially important as many OSS projects started very small by one or a few individuals and then grew large and sophisticated as they attracted more community interests. To support these goals, the COC site should provide several major functions:

· Act as a central repository for COC projects by fostering the COC community, increasing project visibility, and rewarding the volunteers;

· Provide a copyright license to support COC projects;

· Provide tools to support COC management and development.

When compared to other repositories of courseware materials, our COC model offers many advantages. Table 2 compares our COC model and site (COC) with several major projects, including MIT Open CourseWare (MIT), Merlot [Merlot], Visionlearning (VL) [Visionlearning], and Rice’s Connexions Project (Connexions) [Rice]. MIT’s Open CourseWare intends to host all MIT courseware using an open source license. Merlot collects links to online learning materials along with annotations such as peer reviews and assignments. Visionlearning contains a library of scientific modules that are carefully crafted by professional educators to ensure quality and effectiveness. Connexions has similar goals on openness and collaboration as our project, but uses a different approach with a flat architecture. Courses in Connexions are composed of modules, which are the only atomic units, as seen in Figure 2. There are no explicit structure of modules and no sub-division of modules into artifacts.

[image: image3.png]Course

0x ox

Module

Figure 2. The Architecture of Connexions

	Features
	MIT
	Merlot
	VL
	Connexions
	COC

	Copyright
	Open
	Author
	Proprietary
	Open
	Open

	Degree of

Collaboration
	Low to

Medium
	High
	Medium
	High
	Very High

	Content Completeness
	High
	Low
	Low to

Medium
	High
	Very High

	Content Richness
	Medium
	Medium to high
	Medium
	High
	Very High

	Content Review
	Internal
	Medium
	Internal
	Post-publication
	Project dependent

& Post-publication

	Cost
	High
	Low
	High
	Low
	Low

Table 2. Comparison of COC to other leading course material repositories

Copyright belongs to the original authors in Merlot and to the company in VL. The other projects use a license similar to OSS. Collaboration in Merlot, Connexions and COC are high because they accept contribution from a whole community of volunteers. However, COC has an even higher degree of collaboration than Connexions because of its finer object model and hierarchical architecture so more people can contribute. Content completeness refers to the overall coverage of a complete set of materials in a topic. Merlot was not designed around courses and lacks a management structure for projects. Both VL and Merlot have copyright issues prohibiting instructors to freely use their contents. COC has the highest content completeness because of its highest degree of collaboration and rich architecture. Unlike Connexions, COC’s structure also allows projects to define all modules and sub-modules necessary to completely cover a topic and provides a way for instructors to easily identify them. Content richness refers to the abundance of contents for instructors to pick, mix and build their courses. Again, COC provides the best content richness because of its fine object model and high degree of collaboration. There is no external review mechanism for MIT and VL. Connexions and Merlot use Web-based reviews from the community after the contents are published. COC will use post-publication review but will also provide mechanism for pre-publication reviews if the project’s workgroup selects to use them. The ease of uses issue is not listed in the table since it depends not so much on the infrastructure of an approach, but more on tools available in the Websites. With a hierarchical architecture, COC contents can be clearly organized and more easily located and adopted by instructors than other approaches. However, the majority of COC tools will not be built until the next phase of full development.

Cost to construct and maintain courseware is low in COC, Connexions and Merlot. Having a low cost structure for the COC site is very important for its long-term sustainability. There are no inventory to keep and no transaction to perform. Unlike MIT and VL, there is no cost for content development. Even marketing cost is minimal since users are attracted by the merits of the site more than by advertisement.

Among all the other approaches, Connexions is the closest to the goals of our COC project. Although it lacks the hierarchical conceptual architecture and fine grain courseware objects of COC, the flat architecture of Connexions is simple and easy to understand, and it provides many merits associated with its simplicity. For the important direction of building collaborative community for open courseware development, it is desirable to experiment promising alternative approaches to identify best practices and synergy. For example, with a comparable copyright license, authors can use the rich contents of COC to build courses and modules in Connexions. Dr. David Lane, an associate professor of psychology, statistics and management at Rice University and an author of the Connexions project, has indicated his intention to use our project to incorporate courseware he had developed from past NSF DUE projects and serve as an external evaluator for our project. (Please see support letter by Dr. Lane.)

References

[Baladi 2002] Baladi, S., H. Heier, and F. Stanzick., Open Course vs Open Source Software: a critical comparison, the Proceedings of the European Conference on Information Systems (ECIS2001), Gdansk, Poland, June 6, 2002.

[CreativeCommons] Creative Commons' home page: http://creativecommons.org/.

 [Cubranic 1999] Cubranic, Davor. Open-Source Software Development, the Proceedings of the 2nd Workshop on Software Engineering over the Internet. 1999. http://sern.ucalgary.ca/~maurer/ICSE99WS/Submissions/Cubranic/Cubranic.html.

 [EPOC] Enabling the Provision of Open Courseware (EPOC), a work group of the Teaching and Learning Technology Programme (TLTP), UK. Towards a Framework for Open Courseware, ACE (the Assisting Collaborative Education network) Publications. 1996. http://www.ace.ac.uk/papers/epocrep3/index.htm.

[First Monday] First Monday’s home page: http://www.firstmonday.dk/.

[Kim 2003] Kim, Eugene E., An introduction to open source communities, Blue Oxen Associates. April 2003. http://opensource.mit.edu/papers/blueoxen.pdf.

[McPhee] McPhee, Chris. Coordination in open source software development, University of Calgary, http://sern.ucalgary.ca/~cmcphee/SENG693/Opensource.html.

[Merlot] Merlot’s home page, http://www.merlot.org/Home.po.

[MIT]
MIT Open Courseware home page, http://ocw.mit.edu/index.html.

[NCSU] North Carolina State University Open Courseware Laboratory’s home page, http://open.ncsu.edu/resources.html.

[OKI]
OKI (Open Knowledge Initiative) home page: http://web.mit.edu/oki/.

[O’Reilly 2000] O’Reilly, Tim., Open source: the model for collaboration in the age of the Internet. keynote presentation in the Computers, Freedom and Privacy Conferences. Toronto, Canada. April 6, 2000, http://www.oreillynet.com/pub/a/network/2000/04/13/CFPkeynote.html.

[Raymond 2000] Raymond, E., The cathedral and the bazaar, version 3.0. 2000, http://www.catb.org/%7Eesr/writings/cathedral-bazaar/cathedral-bazaar/.

[Rice] Rice University, Connexions, Education for a Networked World, 2003. http://bunker.ece.rice.edu/users/demo/ConnexionsWhitePaper.pdf.

[SCORM] Advanced Distributed Learning (ADL). Sharable Content Object Reference Model (SCORM). http://www.adlnet.org/.

[SourceForge.net] SourceForge.net's home page: http://SourceForge.net.net/.

[Visionlearning] Visionlearning’s home page: http://www.visionlearning.com/.

[Yue 2003] Yue, K. “A Framework for Collaborative Open Source Courseware Development“. A proposal funded by the Institute of Space Systems Operations, May 2003.

