	Normal Forms

o	A set of rules to avoid redundancy and inconsistency.

o	Require the concepts of

o	functional dependency (most important: up to BCNF)
o	multivalued dependency (4NF)
o	join dependency (5NF)

o	Seven Common Normal Forms: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, DKNF.

 +--+
 | All relations (normalized or un-normalized) |
 | +---+ |
 | | 1NF relations | | | | | | | | | | | | | |
 | | +--+ | |
 | | | 2NF relations | | |
 | | | +----------------------------------+ | | |
 | | | | 3NF relations | | | |
 | | | | +----------------------------+ | | | |
 | | | | | BCNF relations | | | | |
 | | | | | +----------------------+ | | | | |
 | | | | | | 4NF relations | | | | | |
 | | | | | | +-----------------+ | | | | | |
 | | | | | | | 5NF relations | | | | | | |
 | | | | | | | +-----------+ | | | | | | |
 | | | | | | | | DK NF | | | | | | | |
 | | | | | | | | relations | | | | | | | |
 | | | | | | | +-----------+ | | | | | | |
 | | | | | | +-----------------+ | | | | | |
 | | | | | +----------------------+ | | | | |
 | | | +----------------------------------+ | | |
 | | +--+ | |
 | +---+ |
 +--+

o	Higher normal forms are more restrictive.

o	A relation is in a higher normal form implies that it is in a lower normal form, but not vice versa.

Examples 1

o	If a relation is in BCNF, then it is also in 3NF, 2NF and 1NF

o	If a relation is in 2NF, then

(a)	it is in 1NF, and
(b)	it may or may not be in 3NF, and
(c)	it may or may not in BCNF.

o	In general, the higher the normal forms a relation is in, the better the design of the relation (in avoiding redundancy and inconsistency).

o	However, it may be necessary to consider other issues.

o	1NF and 2NF are more interesting for historical reasons.

o	4NF and 5NF involves the concept of multivalued and join dependencies (MVD and JD). They are hard to understand and even harder to follow in most situations.

o	Domain Key Normal Form (DKNF) involves the concept of constraints.

o	Based on the concept of functional dependencies (FD), the most important normal forms are

o	3NF and
o	BCNF (Boyce-Codd Normal Form).

Types Of Relationships Between Attributes

(1)	Many to many relationships

Example: Consider the relation Enrol:

 Course Student Grade

 C1 S1 A
 C1 S2 B
 C1 S3 B
 C2 S1 A
 C2 S4 B

Under reasonable assumptions, there are many to many relationships between the attributes

(a)	Course and Student
(A course may enrol many students; a student may take many courses)
(b)	Course and Grade,
(c)	Student and Grade,
(d)	{Course, Grade} and Student
(Both S2 and S3 have a grade of B in Course C1).

However, the relationship between {Course, Student} and Grade is not a many-to-many relationship if we assume that a student can only has one grade for a given course.

o	A many to many relationship between two attributes means that there is no constraint and no dependency between the values of the attributes.

(2)	Many-to-one relationship.

Example 1:

For many applications, the relationship between SS# and NAME are many to one.

SS# ------> NAME
(many) (one)

Interpretations and terminology:

(a)	Many different SS#'s (persons) may have the same NAME.

(b)	Given a SS#, there can only be one NAME associated with it (not allowing alias, etc).

(c)	There should not be two tuples with the same SS#, but different NAME. For example,

 SS# NAME PHONE

 123456789 Peter 367-9890
 123456789 Paul 464-9089
 222229999 Mary 787-9900

is not allowed.

(d)	SS# uniquely determines NAME.

(e)	NAME is functionally determined by SS#.

(f) 	There is a functional dependency SS# --> NAME.

(g)	Hence, a functional dependency specifies a many to one relationship between attributes.

Example 2:

In a university, there is a many-to-one relationship between {COURSE#, STUDENT#} and GRADE.

Interpretations:

(a)	A student may have only one grade for a course.

(b)	We say there is a functional dependency:

COURSE# STUDENT# --> GRADE,
{COURSE#, STUDENT#} determines GRADE.

(c)	Note that under different assumptions, the functional dependency may not be true.

(d)	For example, if a student is allowed to retake a course, then he may have two grades for the same course (in different semesters), then COURSE# STUDENT# --> GRADE is false.

We actually have

COURSE# STUDENT# SEMESTER --> GRADE

o	Hence, functional dependency is a result of analyzing the applications. There is no universally true non-trivial functional dependency.

o	In other words, functional dependencies depend on the semantic of the problems.

Example 1:

In most application, we have

SS# --> NAME	(i.e. a person has only one SS#.)

However, in a criminal database, several bad guys may use the same fake SS#, and thus

SS# --> NAME is not true.

Or, if you are dealing with an international data base with many countries. Each country may has its own SS#. Two countries may issue the same SS#. Hence,

SS# --> NAME is not true.

We may instead have SS# COUNTRY --> NAME.

Formal definition of functional dependency

o	A relation scheme R is said to satisfy the functional dependency X --> Y if for any relation r that uses R, if there are two tuples s and t in r such that s[X] = t[X], then s[Y] = t[Y].

i.e. the same value of X implies the same value of Y.

Example 1: SS# --> SNAME:

There are no two tuples with the same SS# but different name.

Example 2: DEPT-NO --> MANAGER-NO:

There are no two tuples with the same DEPT-NO but different MANAGER-NO. A department has only one manager.

Example 3: SUPPLIER# PART# DATE --> QUANTITY

There are no two tuples with the same SUPPLIER#, PART# and DATE but different QUANTITY. That is, any supplier has only one shipment of a part in a given date.

Armstrong's Axiom

(1)	Reflexivity If X and Y are sets of attributes and Y is a subset of X, then X --> Y.

Example 1: Let X be CITY STREET, Y be STREET, then
 	Y is a subset of X, and X --> Y or
CITY STREET --> STREET.

Interpretation:	If two tuples have the same value of CITY STREET, then they have the same value of STREET.

o	This is so trivial that we call a functional dependency likes CITY STREET --> STREET a trivial functional dependency.

Example 2: A --> A and B C --> B are trivial.

o	Since trivial functional dependencies do not actually give you any information, we are only interested in non-trivial functional dependency.

(2)	Augmentation	If X --> Y then X Z --> Y Z

Example: If S# --> SNAME, then S# P# --> SNAME P#.

(3)	Transitivity		If X --> Y and Y --> Z then X --> Z

Example:	If 	EMP-NO --> DEPT-NO
DEPT-NO --> MANAGER-NO
 		then	EMP-NO --> MANAGER-NO.

Interpretation:	If

(a)	every employee works for only one department, and
(b)	every department has only one manager, then
(c)	every employee has only one manager.

(4)	Decomposition Rule: If X --> Y Z, then X --> Y and X --> Z.

(5)	Union Rule: If X --> Y and X --> Z then X --> Y Z.

Keys and Superkeys

o	We can use functional dependencies to define keys and superkeys.

o	For a relation scheme R, K is a candidate key if

(1)	Uniqueness: K --> R.
(2)	Minimality: there is no proper subset of K that determines R.

o	K is a superkey if K --> R.

Example:

In EMPLOYEE(EMP-NO, DEPT-NO, MANAGER-NO) with

EMP-NO --> DEPT-NO and
DEPT-NO --> MANAGER-NO.

By transitivity EMP-NO --> MANAGER-NO.
 	By rule union, EMP-NO --> EMP-NO DEPT-NO MANAGER-NO.
 	Hence, EMP-NO is a key of R(EMP-NO, DEPT-NO, MANAGER-NO).

On the other hand, DEPT-NO is not a key since we do not have DEPT-NO --> EMP-NO.
