	Normal Forms

First Normal Form

o	A relation is in 1NF if all attribute values are atomic: no repeating group, no composite attributes.

o	Formally, a relation may only has atomic attributes. Thus, all relations satisfy 1NF.

Example: Consider the following table. It is not in 1 NF.

DEPT_NO	MANAGER_NO	EMP_NO	NAME
===
D101		12345		30000	Carl Sagan
30001	Magic Johnson
30002	Larry Bird

D102		13456		40000	Jimmy Carter
40001	Paul Simon

The corresponding relation in 1 NF:

DEPT_NO	MANAGER_NO	EMP_NO	NAME
===
D101		12345		30000	Carl Sagan
D101		12345		30001	Magic Johnson
D101		12345		30002	Larry Bird
D102		13456		40000	Jimmy Carter
D102		13456		40001	Paul Simon

o	Problem: relational operations treat attributes as atomic.

o	Relations satisfying only 1NF has unnecessary redundancy and anomalies.

Second Normal Form

o	A relation R is in 2NF if

(a)	R is in 1NF, and
(b)	all nonkey attributes are fully dependent on the candidate keys.

o	A key attribute appears in a candidate key.

o	There is no partial dependency in 2NF.

If X -> A and X is a subset of a candidate key K, then X = K.

Example:

The following relation is not in 2NF. (Assume the number of credits of a given course does not change). Note the redundancy and anomalies

.	Student_ID	Course		Credit		Grade
--
S10			CSCI 1000		3			A
S10			CSCI 1010		3			B+
S20			CSCI 1000		3			C+
S30			CSCI 1000		3			A-
S30			MATH 1111		1			A

Third Normal Form

o	(Old definition) A relation R is in 3NF if

(1)	R is in 2NF, and
(2)	There is no transitive dependency of nonkey attributes on the keys.

Example 1:

The following relation may be in 2NF, but may not be in 3NF.

 EMP_NO NAME DEPT_NO MANAGER_NO
 --
 10000 Paul Simon D123 54321
 12000 Art Garfunkel D123 54321
 13000 Tom Jones D123 54321
 21000 Nolan Ryan D225 42315
 22000 Magic Johnson D225 42315
 31000 Carl Sagan D337 33323

o	3NF does not eliminate all redundancy due to functional dependencies.

Example 2:	Consider the relation

S(SUPP#, PART#, SNAME, QUANTITY) with the following assumptions:

(1)	SUPP# is unique for every supplier.
(2)	SNAME is unique for every supplier.
(3)	QUANTITY is the accumulated quantities of a part supplied by a supplier.
(4)	A supplier can supply more than one part.
(5)	A part can be supplied by more than one supplier.

We can find the following non-trivial functional dependencies:

(1)	SUPP# --> SNAME
(2)	SNAME --> SUPP#
(3)	SUPP# PART# --> QUANTITY
(4)	SNAME PART# --> QUANTITY

Note that SUPP# and SNAME are equivalent.

The candidate keys are:

(1)	SUPP# PART#
(2)	SNAME PART#

The relation is in 3NF.

Example 3:	Consider the relation R(CITY, STREET, ZIP) with the FDs:

(1)	CITY STREET --> ZIP, and
(2)	ZIP --> CITY.

There are two candidate keys:

(1)	CITY STREET, and
(2)	ZIP STREET

Hence, all attributes are key attributes and the relation is in both 2NF and 3NF.

BCNF (Boyce-Codd Normal Form)

o	A relation R is said to be in BCNF if for every non-trivial functional dependency X --> A in R, X is a superkey.

Example 1:	EMPLOYEE(EMP_NO, NAME, DEPT_NO, MANAGER_NO) with

EMP_NO --> NAME
EMP_NO --> DEPT
DEPT_NO --> MANAGER_NO

is not in BCNF.

The functional dependency DEPT_NO --> MANAGER_NO is

(1) non-trivial, and
(2) DEPT_NO is not a superkey.

Recall that this is the example we used for illustrating bad design.

Example 2:

We can decompose

EMPLOYEE(EMP_NO, NAME, DEPT_NO, MANAGER_NO) into

EMP(EMP_NO, NAME, DEPT_NO) with

EMP_NO --> NAME
EMP_NO --> DEPT

and

DEPARTMENT(DEPT_NO, MANAGER_NO) with

DEPT_NO --> MANAGER_NO

Both relations are in BCNF since

(1)	EMP_NO is a superkey of the relation EMP.
(2)	DEPT_NO is a superkey of the relation DEPARTMENT.

Recall that these are the good relations without the anomalies in the previous example.

Example 3:

 	Consider the relation S(SUPP#, PART#, SNAME, QUANTITY) with the following FDs::

(1)	SUPP# --> SNAME
(2)	SNAME --> SUPP#
(3)	SUPP# PART# --> QUANTITY
(4)	SNAME PART# --> QUANTITY

The candidate keys of the relation S(SUPP#, PART#, SNAME, QUANTITY) are:

(1)	SUPP# PART#
(2)	SNAME PART#

S is not in BCNF because, for example, the functional dependency

SUPP# --> SNAME is

(1)	non-trivial, and

(2)	SUPP# is not a superkey.

To deal with it, we can decompose S(SUPP#, PART#, SNAME, QUANTITY) into

(1)	SUPPLIER(SUPP#, SNAME) with

SUPP# --> SNAME
SNAME --> SUPP#

with two candidate keys:

(a)	SUPP#
(b)	SNAME

(2)	ORDER(SUPP#, PART#, QUANTITY) with

SUPP# PART# --> QUANTITY.

Example 4: Consider the relation R(A, B, C, D) with

A --> B, B --> C, C --> A and C --> D.

There are three candidate keys:

(1)	A,
(2)	B, and
(3)	C.

Since every left hand side of any non-trivial functional dependency is a superkey, R is in BCNF.

Motivation of BCNF

o	The purpose of BCNF is to eliminate any redundancy that functional dependencies can made.

o	In a BCNF relation, no value can be predicted from any other, using only functional dependencies.

o	This is because in a BCNF relation, using functional dependencies only,

(1)	any value can only be determined by a superkey, but
(2)	the superkey is unique.

o	However, there are other type of dependencies.
Therefore, there are higher normal forms.

Example 5:

Consider the relation R(CITY, ZIP, STREET)

Using the code for the postal office, we have

(1)	CITY STREET --> ZIP, and
(2)	ZIP --> CITY.

Hence, there are two candidate keys:

(1)	CITY STREET, and
(2)	ZIP STREET

Therefore, R is not in BCNF.

However, if we decompose R into two relations, each with two attributes, then the functional dependency

CITY STREET --> ZIP is lost.

Therefore, we better leave the relation alone.

o	Sometimes it is not possible to make a relation in BCNF ==> need a less strict normal form (3NF).

Third Normal Form Revisited

o	Alternative definition of 3NF:

A relation R is said to be in the third normal form if for every non-trivial functional dependency X --> A,

(1)	X is a superkey, or
(2)	A is a prime (key) attribute.

o	An attribute is prime (a key attribute) if it appears in a candidate key. Otherwise, it is non-prime.

o	3NF cannot eliminate all redundancy due to functional dependencies.

Example 1:

For the relation R(CITY, STREET, ZIP) with

(1)	CITY STREET --> ZIP, and
(2)	ZIP --> CITY.

Hence, there are two candidate keys:

(1)	CITY STREET, and
(2)	ZIP STREET

Hence,

(1)	CITY is a prime attribute because it appears in the candidate key CITY STREET.

(2)	STREET is a prime attribute because it appears in the candidate key CITY STREET.

(3)	ZIP is a prime attribute because it appears in the candidate key ZIP STREET.

R is in the 3NF because

(1)	For the functional dependency CITY STREET --> ZIP, CITY STREET is a superkey.

(2)	For the functional dependency ZIP --> CITY, CITY is a prime attribute.

Example 2:

Reconsider the relation

S(SUPP#, PART#, SNAME, QUANTITY) with

(1)	SUPP# --> SNAME
(2)	SNAME --> SUPP#
(3)	SUPP# PART# --> QUANTITY
(4)	SNAME PART# --> QUANTITY

The candidate keys are:

(1)	SUPP# PART#
(2)	SNAME PART#

The followings are prime attributes:

(1)	SUPP#
(2)	SNAME
(3)	PART#

The following is a non-prime attribute:

(1)	QUANTITY

S is in 3NF because

(1)	for the functional dependencies (1) and (2), the right hand sides are prime attributes (SNAME and SUPP#).

(2)	for the functional dependencies (3) and (4), the left hand sides are superkeys.

Example 3:

Reconsider

EMPLOYEE(EMP_NO, NAME, DEPT_NO, MANAGER_NO) with

EMP_NO --> NAME
EMP_NO --> DEPT
DEPT_NO --> MANAGER_NO

There is only one candidate key: EMP_NO.

There is only one prime attribute: EMP_NO.

EMPLOYEE is not in 3NF because the functional dependency

DEPT_NO --> MANAGER_NO is

(1)	non-trivial, and
(2)	DEPT_NO is not a superkey, and
(3)	MANAGER_NO is not a prime attribute.

Normalization Theory Using Functional Dependencies

o	To use the theory on functional dependency:

(1)	For a relation of a set of attributes, we analyze the assumptions of the applications.

(2)	From the assumptions, we obtain the functional dependencies.

(3)	We determine the candidate keys and prime attributes.

(4)	If the relation is not in BCNF, we perform decomposition.

(5)	If BCNF cannot be satisfied, we aim for 3NF.

Decomposition

o	Decomposition is a major tool for generating relations satisfying normal forms.

o	Decomposition should be disciplined:

(a)	More relations may be less efficient in storage.

(b)	More relations may be less efficient in executing query.

(c)	Some decompositions are harmful:

(i)	Lossy decompositions.

(ii)	Decompositions that do not preserve dependencies.

o	Hence, it is important to have lossless dependency-preserving decomposition.

Lossy Decomposition

Example:

Consider the relation EMP(EMP_NO, DEPT, MGR_NO) with

EMP_NO --> DEPT
DEPT --> MGR_NO

Note that we do not have MGR_NO --> DEPT, since one manager can manage more than one department under the assumptions made.

 EMP_NO DEPT MGR_NO

 12345 ACCT 90000
 20000 PR 90000
 30000 CAD 95000

The relation is not in BCNF because of the FD

DEPT --> MGR_NO

Suppose we decompose the relation into

EMP1(EMP_NO, MGR_NO)
DEPT(DEPT, MGR_NO)

They are obtained by projections from EMP:

 EMP1: DEPT:

 EMP_NO MGR_NO DEPT MGR_NO
 ------------------- ---------------------
 12345 90000 ACCT 90000
 20000 90000 PR 90000
 30000 95000 CAD 95000

o	If we do not loss any information by the decomposition, we should get the original relation from the natural join.

However, EMP1 |x| DEPT:

 EMP_NO DEPT MGR_NO

 12345 ACCT 90000
 20000 ACCT 90000
 12345 PR 90000
 20000 PR 90000
 30000 CAD 95000

This is not the same as the original relation EMP:

Hence, the decomposition of EMP(EMP_NO, DEPT, MGR_NO) into

EMP1(EMP_NO, MGR_NO) and
DEPT(DEPT, MGR_NO)

is lossy. It is not a good decomposition.

Lossless Decomposition

Example:

Consider now the following decomposition of EMP(EMP_NO, DEPT, MGR_NO):

EMP2(EMP_NO, DEPT) and
EMP3(EMP_NO, MGR_NO)

We have EMP2 and EMP3:

 EMP2: EMP3:

 EMP_NO DEPT EMP_NO MGR_NO
 ------------------- ---------------------
 12345 ACCT 12345 90000
 20000 PR 20000 90000
 30000 CAD 30000 95000

Hence, EMP2 |x| EMP3:

 ENP_NO DEPT MGR_NO

 12345 ACCT 90000
 20000 PR 90000
 30000 CAD 95000

This is exactly the same as the original relation EMP. Therefore, the decomposition does not loss any information. It is a lossless decomposition.

Theory of Lossless Decompositions

Example:

Why is the decomposition of EMP(EMP_NO, DEPT, MGR_NO) into

(1)	EMP1(EMP_NO, MGR_NO) and
DEPT(DEPT, MGR_NO) lossy, and

(2)	EMP2(EMP_NO, DEPT) and
EMP3(EMP_NO, MGR_NO) lossless?

Theorem:	Suppose R(X, Y, Z) is decomposed into R1(X, Y) and R2(X, Z). X is the set of common attributes in R1 and R2. The decomposition is lossless if and only if

(a)	X --> Y, or
(b)	X --> Z.

Example:

In case (1), X is MGR_NO, Y is EMP_NO, Z is DEPT.

None of condition (a) or (b) is satisfied. Hence, (1) is lossy.

In case (2), X is EMP_NO, Y is DEPT, Z is MGR_NO.

Both conditions (a) and (b) are satisfied. Hence, (2) is lossless.

Dependency-Preserving Decompositions

Example:	For the relation EMP(EMP_NO,DEPT,MGR_NO) with

EMP_NO --> DEPT
DEPT --> MGR_NO,

The decomposition of EMP into

EMP2(EMP_NO, DEPT) and
EMP3(EMP_NO, MGR_NO)

is lossless, but it does not preserve dependencies:

the FD DEPT --> MGR_NO

cannot be enforced by any relation.

For example, if we add the information EMP 23000 work in the ACCT department under manager 97000 and are not careful, we may have:

 EMP2: EMP3:

 EMP_NO DEPT EMP_NO MGR_NO
 ------------------- ---------------------
 12345 ACCT 12345 90000
 20000 PR 20000 90000
 30000 CAD 30000 95000
 23000 ACCT 23000 97000

The FD DEPT --> MGR_NO is violated.

Thus, for the relation EMP(EMP_NO,DEPT,MGR_NO) with

EMP_NO --> DEPT
DEPT --> MGR_NO,

the best decomposition is into

EMP1(EMP_NO, DEPT) and
DEPT(DEPT, MGR_NO)

It is easy to show that, the decomposition is lossless, preserves dependencies, and that
EMP1 and DEPT are both in BCNF.

Teaching Notes:

o	Give the anomalies that NFNF relation has: e.g. difficulty of finding which department Magic Johnson is working for.

o	Give an example of a key attribute that is in a candidate key, but not in a primary key.

o	Discuss the anomalies of the relation not in 2NF in the example.

o	For each example, show the assumptions, FD's, candidate keys and highest normal form the relation is in.

o	The relation of Example 1 of BCNF is also not in 3NF.

o	Note that lossy decomposition is usually gainly.
