CSCI 4333.2
Annotation
2/4/26

Introduction to UML
by K. Yue
1. Introduction to UML
· UML: A set of graphical notations for object-oriented modeling.
· Wikipedia: "The Unified Modeling Language (UML) offers a way to visualize a system's architectural blueprints in a diagram."
[image:]

· A standard maintained by OMG: OMG's UML page.
· Two major versions:
· Version 1.4.2: international standard released in 2005.
· Version 2.5.1: released in 2017, added nested classifiers and improved behavior models. Specification: https://www.omg.org/spec/UML
· Two main types of diagrams:
· Structure diagrams: model static structures.
· Behavior diagrams: model dynamic behaviors.
· Version 2.5 has 15 diagrams: 7 structure diagrams and 8 behavior diagrams.
· Some Resources:
· OMG UML Resource
· SPARX UML Tutorial.
· We will focus on the class diagram only.
Class Diagram of UML 2.2 diagram (from Wikipedia):
[image: UML 2.2 Diagram]

Data modeling focus on class diagram and object diagram.
2. Class Diagrams (Emphasis on DB applications)
2.1 Introduction:
· A static structure diagram in UML.
· "Describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among the classes." -- from Wikipedia.
· Read "class diagram" from Wikipedia: http://en.wikipedia.org/wiki/Class_diagram.
· For a significantly better introduction by IBM: http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/.
· Two kinds of tools for drawing UML diagrams:
· Graphical tools: main purposes are drawing diagrams (e.g., MS Visio, draw io, etc.)
· Computer-Aided Software Engineering (CASE) tools: for software development with some understanding of the semantics of diagram elements (e.g., MagicDraw, IBM Rational Rhapsody, Visual Paradigm, Astah, etc.)
· We use Astah UML Editor
· We will use community version in classroom demonstration, which is now deprecated.
· Students can use the more powerful student version for free: search "astah student license".
· One may also use UML object diagrams to show objects and their associations of a snapshot of the system.
[image:]
[image:]
Create a new class diagram
[image:]
[image:]
[image:]
[image:]

[image:]
2.2 A Simple Conceptual Modeling Process (OO Modeling)
1. Study application requirements to gain a very good understanding of the problem.
2. Conduct an analysis to extract concepts that may have data requirements.
3. For each concept, decide how should it be modeled? Major options are:
1. by attributes
2. by a class
3. by associations between classes (including special associations, such as composition, aggregation, generalization, etc.)
4. no need to model (as it does not represent any data requirement)
These steps are repeated until the model reaches the necessary fidelity, accuracy, and precision.
[1] Class: Concept A: A by itself.
· Have attributes
· Have associations
· Flexible
· More complexity
· Exists by themselves (object standalone by themselves)
[2] Attributes: Concept A: A of X. A is a property of X (object or association)
· No sub-attribute.
· Cannot form association
· Only have values
· Simple
· Dependency on other elements (such objects, associations)
· Property of something.
·
[3] Associations: Concept A: X (subject: OO’s object) – A (verb) – Y (object)
· May have attributes
· Cannot form association with other elements
[4] No la: no data requirements.
Example:
Problem. A used car dealership application's subsystem: information about cars and their manufacturers.
Specification description: A car manufacturer has a unique id and name. A car maker may make many cars. For example, Honda, which may have a manufacturer id of 10001, makes Civic and Accord.
Concepts:
[1] Car manufacturers (i.e., Car maker): class
[] Car: class
[] Vin number: uniquely identify a car.
A car's model refers to the specific name or design of a vehicle within a manufacturer's lineup (the make, like Toyota), distinguishing it by features, size, and style (e.g., Camry, Corolla) from other products of the same brand, with different trims and options.
[image:]
[image:]

[] unique id (A) of car manufacturer (X): E.g. 10011 is the id of Honda: attribute of what element?
[image:]
UML general-purpose, extensible modeling language: stereotype (tag, property added on UML elements), <<unique>>
[] Year
“A car manufacturer has a unique id and name. “

[] name (A) of the car car manufacturer (X): attributes
[] may make many:
Sentence: subject: X verb: A object: Y
“A car maker (X) may make (A) many cars (Y).
[image:]
Multiplicity/Cardinality: # of objects involved in the association.
[image:]
[image:]
[image:]
[image:]

[] Convertible
[] Honda: the value of the name of a manufacturer. No need to model, just an example
Name of a manufacturer: attribute name:, value: Honda
[image:]
[] 10001: value of the id attribute of a manufacturer.
[] Civic: object; no need to model in a class model.
[] Accord: objects; no need to model

: A car manufacturer has a unique id and name. A car maker may make many cars. For example, Honda, which may have a manufacturer id of 10001, makes Civic and Accord.

Analysis and Design
Some observations:
1. Manufacturer: a class (template) that can be used to initiate many manufacturer objects (instances).
2. Honda: an object of the class Manufacturer.
3. Resolve ambiguous terms: e.g., the term "manufacturer" may refer to the manufacturer class, or a particular manufacturer (i.e., a manufacturer object such as Honda).
4. Define synonym: manufacturer, car manufacturer and car maker may be the same. Different terms can refer to the same concept.
5. "Unique id": may be modeled as an attribute (name), a property of the manufacturer class.
6. Make additional assumptions: E.g., every manufacturer object must have an unique id.
7. 10001: attribute (value) of the id of a manufacturer object.
8. Name: a property of a manufacturer.
9. Another additional assumption: Every manufacturer object must have a name.
10. Car: a class, as there may be many brands of cars.
11. Prepare questions: E.g., do we need to introduce the concept model (e.g., Coupe, Sedan, Si Coupe)?
12. Civic and Accord: object instances of Car.
13. Additional assumption: Every car must have a name as its attribute.
14. Make, or manufacture: a relationship between a manufacturer (object) and a car (object). A manufactor (object) makes (verb: possible asspication) a car (object).
Class Diagram:
[image: car1]
Object Diagram:
[image: car_2]
2.3 Classes
2.3.1 Basics
1. Drawn as a rectangular box.
2. The class names, attributes, and operations may be specified, with selected details in the name, attribute, and operation compartments respectively.
3. Attribute and operation compartments are optional.
4. For DB modeling,
1. The attribute compartment will eventually need to be clearly modeled.
2. The operation compartment may not be needed.
5. The levels of details depend on the phases of modeling. It is a common mistake to specify too much detail in the early modeling phases.
6. As modeling proceeds, more details are added, updated, and refined.
Note that software application modeling and database modeling have different foci.
1. Software modeling: focus on operations (methods, especially public methods).
2. Database modeling: focus on attributes (data).
Example: The following sequence of diagrams of how the modeling of the used car dealership application may proceed.
Initial version: v0.0.1.0:
· Only some major classes, associations, and attributes.
[image:]
Version v0.0.1.1:
· Add a payment class and some attributes.
[image:]
Version v0.0.1.2:
1. Decided to split the concept 'car' into two concepts 'car model' and 'car'. Adjust associations.
2. Add some type information.
[image:]
Version v0.0.1.3:
1. Add an association between Payment and Car.
2. Add multiplicity of the association "of the model of":
1. A car must be made of one car model.
2. There may be many cars made of the same model.
3. Add multiplicity of 1 to the attributes Amount and PayTime of the class Payment. They are mandatory.
[image:]
· For example, one may focus on the main classes and their associations in the first model, without worrying about the attribute or operation compartments.
· Most UML editors allow controlling visibility of different elements. For example, in Astah:
[image: astah_1]
· A stereotype (specifying the kind of entities) and a property list with tagged values can be added to any compartment.
· Their flexibility allows for customization and extensibility to fit specific applications.
· Additional properties on data members may be specified, such as:
1. Visibility: + (public: +, protected: #, private: -, etc.)
2. data types
3. abstract (in italic) or concrete (as constraints)
4. class members (underscored) or instance members
5. default values
Example: for software modeling:
[image:]
Example: for database modeling.
[image: astah_2]
The classes Patron, Member and Department with some attributes may be modeled in the first draft of the UML class diagram. Boxes in the diagram above:
1. In a subsequent iteration, attributes may be added using settings of the UML tool showing visibility of the attribute members.
2. Data types may be included using predefined data types provided by the tool.
3. In a further iteration, stereotype may be added, such as to identify the primary key <<PK>> and simple candidate key <<unique>>.
4. More specific user-defined types (or implementation types) may be used.
5. Operation members may be added. They are in general less important than data members in data modeling.
6. Multiplicity should eventually be added, as shown in the diagram for Patron below.
[image: astah_3]
· Note that multiplicity can be used to depict nullable and multi-valued attributes. In this example, PatronId is not nullable ([1]), Phone is nullable ([0..1]) and Hobbies can have multiple values ([0..*]).
Check out the introductions to class diagrams from agile modeling and wikipedia.
· Some possible relational database extensions on attributes may include:
1. Multi-valued: * or by using multiplicity.
2. Multiplicity can also be used to indicate whether an attribute is nullable.
3. Derived: <<derived>> using stereotype, \, or using other specific notations
4. Primary key: <<PK>> as stereotype.
5. Candidate keys: <<CK>> as stereotype.
6. Unique field: <<unique>> as stereotype.
7. Nullability: <<nullable>> or by using multiplicity.
8. User-defined or system defined SQL data types.
9. Indexing: <<index>> as stereotype.
· Check with your organizations for UML guidelines on a specific project.
· An example of a database profile for UML: http://www.agiledata.org/essays/umlDataModelingProfile.html
. may be adapted for uses in later phase of modeling.
2.3.2 More Properties of Classes
· A class is a 'first-class citizen.'
· It has attributes.
· It can form associations with other classes.
· It can have operations.
· Objects of a class can exist by themselves.
· It has more structures for modeling data requirements.
· As a comparison, an attribute is not a first-class citizen.
· It does not have sub-attributes.
· It cannot form associations with other elements.
· The existence of an attribute depends on the object..
· Objects can be instantiated from classes.
Example:
[image: asta1]
We may have four objects of the student class: S1, S2, S3 and S4. Each student object represents an individual student in a database application.
We may have three objects of the course class: C1, C2, and C3. Each course object represents an individual course in the database application.
2.4 Associations
· Binary associations are represented by solid lines.
· Important options include:
1. Association names with directional arrows (for reading).
2. Association roles: the role of an object participating in an association.
3. Multiplicities: the allowed number of associated objects.
4. Association attributes can usually stored by promoting an association to an association classes.
5. Qualifiers: association attributes to partition the targeted classes.
6. Navigational requirement: specified by arrows. Usually not used in data modeling.
7. Dependency constraints: by dotted lines.
· Some modeling questions and decisions:
1. Should we model something as a class or as an association?
2. Should we model something as a class or as an attribute?
3. What kind of association should I use? Binary association, association class, n-ary association?
Example: Note that no attribute is shown in this initial phase.
[image:]
Note:
1. Job is an association class.
2. The arrow in the association "works-for" shows the direction of the association.
3. The association "manages" is between two job objects.
4. The {or} designation specifies the partition of the account class into two classes: person (account) and corporate (account).
Example: For:
[image: asta1]
The association Enroll describes the association 'type'. An association is actually between two objects (a student object and a course object). Examples:
S1 -- C1: meaning student S1 is enrolled in course C1.
S1 -- C3: (The associations S1--C2 and S1-C4 do not exist. This means the student S1 has not enrolled in the C2 or C4.)
S2 -- C1
S2 -- C2
S2 -- C4
S3 -- C3
S4 -- C1
S4 -- C4
2.5 Multiplicity
· Multiplicity can be specified by a number, the symbol * (many), a range, or a set. Some example:
· 0..1: zero or 1
· 1..1: only 1
· 1: may be 0..1 or 1..1; usually interpreted as 1..1
· 0..*: zero or many
· 1..*: 1 or many
· *: many; may be 0..* or 1..*
· 1..4: 1 to 4
· {1, 2, 6}: 1, 2 or 6
· {1, 3:5, 7:9}: 1, 3, 4, 5, 7, 8, 9
· Multiplicity is a very common source of errors. Please refer to the explanation in the following diagram until you are very clear about it.
[image: asta 5]
· Meaning:
· Every X object must be associated with n Y objects.
· Every Y object must be associated with m X objects.
Example
What do you think about these class diagrams?
(a)
[image: asta 3]
Assumptions made:
1. A student may take many courses.
2. Not sure whether a student is allowed to take zero course since * (instead of 0..* or 1..* is used).
3. A course may have many students enrolled.
4. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
(b)
[image: asta 4]
Assumptions made:
1. A student must be enrolled in one or more courses (may not be a reasonable assumption).
2. A course may have 0 or more students enrolled.
(c)
[image: asta 2]
Assumptions made:
1. A student can only be enrolled in 0 or 1 course only (sound not reasonable).
2. A course may have many students enrolled.
3. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
Aggregation indicator
1. aggregation (hollow diamond) and composition indicator (solid diamond):
2. Aggregation models the ‘a-part-of’ relationship (whole-part). E.g., car-wheel.
3. Composition is a strong form of aggregation: the part's lifecycle is dependent on the whole's lifecycle; e.g. university-department, building-room.
4. They can also be represented by using multiplicity.
Example: Aggregation and Composition
[image:]
What do you think about this composition and aggregation examples in: http://en.wikipedia.org/wiki/File:Congregationalism?
Ternary Associations
· N-ary associations are represented using a diamond connecting to participating classes.
· Not so common.
· May be modeled as a class instead.
· A ternary association involves three participating objects.
An example from a tutorial:
[image:]
Notes:
· In modeling, a ternary association can reasonably be replaced by promoting it to a class and add three binary associations.
· Don't use n-ary associations where n>=3 unless you are sure.
Generalization and Specialization
· Generalization is represented by a hollow triangle at the superclass.
· Generalization models the 'a-kind-of’ association.
· It is mainly used to
· manage classes with common data members and methods by putting these common members into their superclass.
· provide inheritance.
· avoid multiple copies of member definition.
· Some options of generalization include:
· discriminator (the name of the partition),
· powertype (a class in which an instance of it is a subclass of the superclass),
· constraints (overlapping, disjoint, complete, incomplete and user defined constraints).
Example:
[image:]
[image:]
· There are many possible options and extensions.
Constructing class diagrams: some tips
1. There are many methodologies and best practice tips to construct effective class diagrams.
2. There are many possible modeling options: e.g., classes versus attributes, classes versus associations, multiplicity, etc.
3. Need to fully understand the assumptions and implications when making modeling decisions.
4. Do not model implementation details in earlier modeling phases.
3. Example: toyu
A reasonable conceptual model of the toyu database in UML:
[image:]

image2.png
Diagram

—

Structure.
Diagram

Behavior
Diagram

Class,
Diagram

Component
Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure.
Diagram

Deployment

Diagram

Package
Diagram

Interaction State Machine

Diagram

Diagram

Notation: UML

5

Sequence
Diagram

Communication
Diagram

Tnteraction
Overview
Diagram

Timing
Diagram

image3.png
& 2% astah.net/products/free-student-license/ Q 4 O3 2

Data Science - One... el UHCL Catalog [§f] CSCI 4333 Designo... @ Adobe Acrobat @ Adobe Acrobat

Students / Estudante Portuguese HZAE $3X dnwsina O

(__
aStgh\ About ~ Who We Serve + Products v Pricing v Support ~ Downloads

Get a free student license

Students who have an academic email address are eligible to Academic Email Address
receive a FREE license for Astah UML.

e This is for a single student’s personal use only. School name”
¢ Instructors and teachers cannot use this student license.

e Instructors and teachers should purchase an academic

First name*
license.

We no longer accept applications with attachment files. This Lot name* 6
change had to be made due to a high number of dishonest

applications. Please ask your teacher to purchase a site-wide
license.

Got any questions? I'm happy
help.

O I confirm that | entered my information correctly and | am a student
at the school | entered above* ‘

image4.png
Q astah Community

B T R

Best match =

I ﬁ Astah Community
App

Folders Astah Community

App
asta >

Search the web (7 Open

Y an, Voo R e e e O S OO T e P ~

image5.png
w
Eﬁ Astah

[1~ Class Diagram

4
4

UseCase Diagram
Statemachine Diagram
Activity Diagram
Sequence Diagram
Communication Diagram
Component Diagram
Deployment Diagram

C‘ Composite Structure Diagram

[Paid]Flowchart

[3l

[Paid]Data Flow Diagram

[53]

[Paid]ER Diagram

[=d]

[Paid]CRUD
[Paid]Mindmap

[Paid]Requirement Diagram
[Paid]Requirement Table
Diagram

RECENT PROJECTS

'a'< uml ex 1l.asta

'a'< h2sol.asta

— File Edit Diagram Alignment View Tools Window Help

UseCase Diagram

Activity Diagram

Communication Diagram

Deployment Diagram

Welcome to Astah!

To see the latest news about Astah, useful tips :
using a proxy, go to [Tool] - [System Propertie:

ann
JJJEHS AR A" Yyaaanm-

{— .
astahS\.community

1
.
t
CREATE DIAGRAMS E
@ Cum Dot i UseCae Dugra -

t

£
|

o o

e RO

image6.png
E Astah - [no_title] (*) -«

File Edit Diagram Alignment View ToglsWindow Help

k=D QQIE_?;/'_I'I-"J"&'A'/’"EE.“

Structure Inheritance M2z Diagram
(=1~ 71 no_title 2
[java
Class Diagram0

E student

Property Template Parameter Constraint
Generalization Dependency Association
Base Stereotype Attribute Operation
Namespace

Name student

4

> Class DiagramO/

‘I‘E'QF_“]?—'_’E_‘F‘?""“O'Q'IOO'EHI-_D ----- T-O'\N&

e

Visibility public N
Abstract false N
Leaf false N
Active false N
Definition
-
Close

image7.png
EN Astah - [no_title] (*)

File Edit Diagram Alignment View Tools Window Help

YL TR C U MRy

«

Structure Inheritance Map Diagram 4
(=1~ 71 no_title
[java

Class Diagram0

= gstudent
 stuld:int

ﬁ‘ fname:int
*

Iname:int

Propejty Tempjate Parameter Constraint
Gene|alization | Dgpenden Association
Base| Stereotfpe Operation

Type Visibility Initial...

stuld int private
name int private
hame int private

Type ...

Add Delete Edit
Up Down

Class Diagram0
Class DiagramO / Class Diagram
RERER? — 54 o QOO =L D

D=

T-ONK .

pkg

student

stuld : int
fname : int
Iname : int

Close

image8.png
>4

bt |

Eﬁ Astah - [no_title] (*) - m] X .
d document 'n' Speech settings r
File Edit Diagram Alignment View Tools Window Help
| 11-|® o ML Mo 2 AN -t fclected =t MathTyp
Structure Inheritance Map Diagram : Class DiagramO / Pause
= m-—t_'t'e £2|Class Diagram0 / Class Diagram D=RREE X Read My Document Add-in
+- java — — —y
2] Class Diagramo ‘i‘gbm?—vE??...-pvonvl-OOval_D T O\ |
= student
= . y pkg
stuld:int]
“ fname:int
“ Iname:int
Add Stereotype Ctrl+Alt+S
“ Add Attribute Ctrl+R
—» ™ Add Operation Ctrl+M Show/Hide Namespace
Add Template Parameter
8 e " student Visibility Kind Visibility
(;:s:;yﬁzat;':p a;:peanr::zyter AS::;:;(‘)’: stuld:int © Delete Attribute > . -
Base Stereotype Attribute Operation r::z: _: iI: = Delete Operation > A.tt.”k.)l_ne/ Operaftlon VISIbIlIt}{
— 1 g Delete Template Parameter > Visibility of Attribute/Oepration >
Name Type Type ... Visibility Initial...
stuld int private x Delete from Model Ctrl+D _
fname int private X Delete from Diagram Delete v Attribute Initial Value Visibility
Iname int private BR Copy Ctrl+C v Attribute Stereotype Visibility
B Copy to Clipboard s Attribute Constraint Visibility
E-ii Paste Ctri+V Operation Return Type Visibility
5 EOF;)' ziylle(:) Operation Parameter Visibility
L Paste Style(E) Operation Parameter Type Visibility
Add Delete Edit Depth Arrangement > Operation Parameter Direction Kind Visibility
Operation St Visibili
Up q Down = Stereotype Visibility Operat!on c eret()t}.lpfv.ls.lb.;.lty
e —d v Attribute Compartment Visibility peration Constraint Visibility
Operation Compartment Visibility v Template Bound Information Visibility

9% Accessibility: Investigate Template Formal Parameter Visibility

image9.png
ﬁ Astah - [no_title] (*)

File Edit Diagram Alignment View Tools Window Help

k=D o R M- I MO A M AP -t

Structure Inheritance Map Diagram
(=1~ 71 no_title
[java
Class Diagram0
= course]
= gstudent
& stuld:iNg
 fname:int
“ Iname:int

Property Template Parameter Constraint
Generalization Dependency Association
Base Stereotype Attribute Operation

Name Type Type ... Visibility Initial...
stuld int private
fname int private
Iname int private
Add Delete Edit
Up Down

Close

> Class Diagram0

&/Class Diagram0O

ass Diagram

XBERfR? — 54 T o Q00 =L D

[
D=nE X

T-ONW

pkg)

course

image10.png
(ﬁ Astah - [C:\S26_DB\website\demo\s2\car.asta] (*) -] >

File Edit Diagram Alignment View Tools Window Help

i 1-1- QAL Bl iy A S T

Structure Inheritance Map Diagram : Class Diagram0

= e

[+ [njava @gbm?_v_’E_va?....pvonvPOOvaL_D T[]

Class Diagram0

|
€
| = Ecar

@ vin:int
Ecar model

L G .

Manufactur :I

Base Initial Visibility

Namespace car model
Name ‘Class DiagramO <<unique>> id color
Frame Visibility name year
Definition

L | e {1

car 1
*
] 1%

Close aw Unspecified

image11.png
A car is of the model of how many

models?
Manufacturer car model
<<unique>> id makes P> color
name 0.. 0.* | year
=1 m
5> 1
A car must be of A
exactly one model in ofthenld 1
order to be stored in | 0.*
the DB. *
car 1.*
<<unique Unspecified

image12.png
Manufacturer

<<unique>> id
name

0.1

makes P> 0.*

car

image13.png
ﬁ Astah - [C:\S26_DB\website\demo\s2\car.asta]

File Edit Diagram Alignment View Tools Window Help

v

he O - QQrl

vﬁv|-v @'&'é'x'ﬁ'%“'

Structure Inheritance Map Diagram
= acar
[java
Class Diagram0

Hcar

= gManufacturer
< id:int
" name:int

4
4

1

Class Diagram0

%|Class Diagram0 / Class Diagram

Manufacturer ET

Association End B Constraint B
Association End A Constraint A
Base Stereotype Constraint
Name makes /
Definition
Close

image14.png
ﬁ Astah - [C:\S26_DB\website\demo\s2\car.asta] (*)

File Edit Diagram Alignment View Tools Window Help

1 T ISR T

vﬁv|-vl_ilv&v£vxvmvgauv

Structure Inheritance Map Diagram

= acar
[java
Class Diagram0

Hcar

= gManufacturer
< id:int
" name:int

: Class Diagram0
&/Class Diagram0O / Class Diagram

pkg

Manufacturer

Association End A Constraint A
Base Stereotype Constraint

Association End E: Constraint B
Target car \

Type Modifier

id
name

makes > o.*

Name
Navigation unspecified navigable N
Aggregation none
Initial Value
Visibility private
Static false N
Leaf false /
Multiplicity 0..* N
Derived false
Definition

Close

car

image15.png
ﬁ Astah - [C:\S26_DB\website\demo\s2\car.asta] (*) - m] X

File Edit Diagram Alignment View Tools Window Help

BEO Q_E - IS S e

Structure Inheritance Map Diagram : Class Diagram0

=-Hacar &|Class DiagramO / Class Diagram n.& X

j 'S - s
JCal\a,:SDiagramO ‘i‘gbﬁ? _'E‘P :@vonv[’OOv =vl [Tv[]v\

Ecar
= gManufacturer
+ id:int
“ name:int

pkg

Manufacturer . . ET

Association End A Constraint A
Base Stereotype Constraint
Association End B Constraint B
Target car ™~
Type Modifier
Name
Navigation unspecified navigable N 1.%
Aggregation none
Initial Value
Visibility private
Static false
Leaf false
Multiplicity 0..*
Derived false
Definition

1 2.*
0.1
0.*

*

<

Unspecified

4 RE RdERaRd

Close AV

image16.png
<

4 RE RdERaRd

pkg

Manufacturer

id
name

makes > 0

car

image17.png
Structure Inheritance Map Diagram

= acar
[java

Class Diagram0

Hcar

= gManufacturer
< id:int
" name:int

Base Stereotype Constraint
Association End B Constraint B
Association End A Constraint A

Target Manufacturer

Type Modifier
Name
Navigation
Aggregation
[nitial Value
Visibility
Static

_eaf
Multiplicity
Derived
Definition

unspecified navigable
none

private
false
false47
0..1

false

<

[ARERE Raie

Cloce

VA

Class Diagram0

[Z]Class Diagram0 / Class Diagram
* gbm ? _v_é? A Y0 val-OOv E|v|._ D

o R

pkg
Manufacturer ET
id o Mmakes > 0.+
name : -

image18.png
Base Stereotype Constraint

Name

Type

Type Modifier
Aggregation
Initial Value
Visibility
Static
ReadOnly
Multiplicity
Derived
Definition

name
int

composite
private
false

false

false

Manufacturer

<<uni >> j
& <unique |do

&ame o

E.g., HOnda, Tesla, etc.

0.1

makes >
0

car

image19.jpeg
Manufacturer

- MId : int[1]
- Name : string[1]

Car

makes P>

- Name : string[1]

image20.jpeg
Honda:

10001

image21.jpeg
Manufacturer

Mid

makes P>

buys }

Customer

Car

image22.jpeg
Manufacturer
Car
il makes P> Name
Name
buys | g
Customer Payment
cid Amount
FName pays | 4 -
PayTime
LName

image23.jpeg
Manufacturer

Mid
Name

CarModel

makes P>

Customer

Cld
FName

LName

Name

Vin
buys >

pays >

Payment

Amount : decimal
PayTime : Time

A

of the model of

Car

image24.jpeg
Manufacturer CarModel
Mid makes P> Name
Name 1
A 0.*
of the model of
Car
Customer -
buys >

Cld

FName

LName

pays P>

Payment

Amount : decimal[1]
PayTime : Time[1]

paid for >

image25.png
MEmm? —v&4 ¢ =vorQv0Orart D~ TrO'NE #[

kg

Add Stereotype. Ctrl+Alt+S

© Add Attibute [N

, = Add Operation M
Pl Add Template Parameter

 Delete Attribute »
= Delete Operation »
Delete Template Parameter »

Delete from Model s
Delete from Diagram Delete.

B Copy Cuiec
B2 Copyto Clipbosrd »
Paste cuiey

BB CopyStyletn)

L PasteSyle®)

Depth Arrangement »

Stereotype Visbility
Attribute Compartment Visi
Operation Compartment Vi
+ Extended Viibility -

[<[<]<]

image26.png
Rectangle

pi-Point
pPoint

«constructor»
Rectangle(p1:Point, p2:Point)
wquerys

area) Real

aspect(): Real

“updates
move (delta: Point)
scal (fatio: Real)

image27.png
Patron Member Department

- Memberld : int <<PK>> Departmentld : SQLId
- LastName : String <<unique>> Departmentiame : SQListring
Address : SQLstring

samuuresswu\

image28.png
Patron

Patronid : SQL:1d[1]
LastName : SQL:String(1]
FirstName : SQL:String[1]
Phone : SOLSting[0. 1]
Hobbies : Strings(0.4]

image29.jpeg
Student

Enroll P>

Course

image30.png
Workstor 1,

Company

ermployer | employee

o
salary

worker]«

boss
01

<Manages

Account

/ Person
o)

)
\‘\ Corporation

image31.png
m

image32.jpeg
Student

*

Enroll P>

*

Course

image33.jpeg
Student

Enroll P>

Course

image34.jpeg
Student

Enroll P>

0..1

Course

image35.png
1 Contains» 4
Polygon |K>———————=1 point
{ordered}

T
1| GraphicsBundie

color
texture
density

image1.png
GMMember

<<PK>> GMId : int[1]
LName : string[1]

Recommend

FName : string[1]
EMail : string[1]
Since : SQL:DateTime[1]

1

0%

Comment

CommTime : SQL:DateTime[1]
Comment : string[1]

0..* 0.1

comments on P>

Category

<<PK>> Categoryld : int[1]
<<unique>> Category : string[1]
Description : string[0..1]

Recomendation : string[1]
0.* Description : string[0..1]
v DisplayLink : boolean[1]
|
| Recommend P>
0i.* 0..*
GroupMembership Sreun
P K y <<PK>> Groupld : int[1]
0™ JNci’zl:rllITr:e' ISSCt)rIi.r,‘D[aote;l']lmeH] 1.* 1 | <<unique>> Name : string[1]
- o Description : string[0..1]
1 1 1 0.
1
]
Admin
REgUIIMEmBen Phone : string[1]
1
0.*
0.,
Posting IS
PostTime : SQL:DateTime[1] [postin sz ibventasinii]
Subject : string[1] EventNamle : string[1]
0.:* 1 Body : string[1] Pllace - il)
Priority ; int[1] Time : SQL:DateTime[1]
- Description : string[0..1]
1
0.*
0. 0.*
EP_Type
RegularPosting EventPosting <<PK>> EP_Typeld : inf{1]
0.5

1 <<unique>> EP_Type : string[1]

image36.png
season|*

Team Pla
team Y goakesper il

Record

goalsfor
goals against
wins

Iosses

ties

image37.png
Truwk

Sailhoat

image38.png
Tree

{disjoin, incomplete}
species Tree Species.

gowertypes
TreeSpecies

Oak.

image39.jpeg
School 0.1 0.* Senaitment 0.1 ai¥
T <<PK>> deptCode : string
<<PK>>schoolCode : string | {housed in <<CK>> deptName : string Awork for 0.1
<<CK>> schoolName : string numStaff : int[0..1] =
0.1 —
oLt g advisor
major in »
minor in P>
0.
0.2 *
: rubric\ 0+
Student 0.
Course

<<PK>> stuld : int
fname : string

advisee

lanem : string
ach : int[0..1]
Grade 0.1 0.*

<<PK>> grade : string
gradePoint : int[0..1]

Faculty

<<PK>> courseld : int
number : string

title : string

credits : int[0..1]

Enroll P>

Enroll

results in

n_alerts : int[0..1]

A

is an offering of

<<PK>> facld : int
fname : string
Iname : string
rank : string[0..1]

1 instructor

A

taught by

Class

year : int

<<PK>> classld : int
semester : string

room : string[0..1]

