11/13/2019
Normalization
by K. Yue
1. Introduction
· Normal forms: a set of rules to check for poor database design.
· Require the concepts of various kinds of data dependency: dependency or restrictions between two sets of attributes.
1. functional dependency (FD, most important: up to BCNF): simple and practical
2. multi-valued dependency (MVD for 4NF)
3. join dependency (5NF)
· Common Normal Forms in ascending order: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, DKNF, 6NF.
· Higher normal forms are more restrictive.
· A relation is in a higher normal form implies that it is in a lower normal form, but not vice versa.
Example:
If a relation R is in BCNF, then R is also in 3NF, 2NF and 1NF.
If a relation is in 2NF, then
1. It is in 1NF,
2. it may or may not be in 3NF, and
3. it may or may not be in BCNF.
If a relations is not in 3NF, then
1. It is not in BCNF.
2. It may or may not be in 1NF or 2NF.
Venn’s Diagram
[image: Image result for normal forms relational database]
General Overview
· In general, the higher the normal forms a relation is in, the better the design of the relation in terms of avoiding unnecessary redundancy and inconsistency.
· However, it may be necessary to consider other issues, especially performances.
1. Higher normal forms may be achieved by decomposition, resulting in more relations.
2. More joins may then be needed to provide the data for a query, decreasing performance.
· 1NF is usually assumed. (1NF: No multi-valued column) However, there are relations not in 1NF in both theory and practice.
. For an example, a composite data type may be supported by a specific DBMS vendor.
· 2NF is more interesting for historical reasons.
· 4NF or above involves data dependency that are hard to understand and use. They are usually not used in practice.
· Based on the concept of functional dependencies (FD), the most important normal forms are
. 3NF and
. BCNF (Boyce-Codd Normal Form).
2. Functional Dependencies (FD)
· Each attribute in a database represents certain data information in the application.
· There can be dependency between data.
· For example, types of dependency and relationship between sets of attributes:
· Many to one (0..* to 0..1): FD
· Many to many (0..* to 0..*)
· These relationships are the results of assumptions we made about the application requirements.
Example
Many to one relationships.
For many applications, the relationship between SSNum and NAME are many to one in a relation R(..,SSNum, Name, ...)
SSNum (P) -> Name (Q)
(many) (one): every SSNUM is associated with only one Name.
Many: every name is associated with many SSNum.
P -> Q (given a P value, there is only one Q value.)
Assumptions:
1. A SSN uniquely identifies a person.
2. Given a SSNum, there can only be one Name associated with it (not allowing alias, etc.)
3. Many different SSNum's (persons) may have the same Name.
4. There should not be two tuples with the same SSNum, but different NAME in all instances of R.
Terms:
1. SSNum uniquely determines Name.
2. Name is functionally determined by SSNum.
3. There is a functional dependency SSNum -> NAME.
4. Hence, a functional dependency specifies a many to one relationship between two sets of attributes.
For example, the relation instance:
	SSNum
	NAME
	PHONE

	123456789
	Peter
	123-456-7890

	123456789
	Paul
	713-283-7066

	222229999
	Mary
	713-283-7066

is not allowed if we assume SSNum -> NAME.
Example
In a university, there may be a many-to-one relationship between {CourseId, StudentId} and Grade.
Interpretations:
1. A student may have only one grade for a course.
2. We say that there is a functional dependency:
· CourseId, StudentId -> GRADE, or
· {CourseId, StudentId} determines Grade.
3. Note that under different assumptions, the functional dependency may not be true.
4. For example, if a student is allowed to retake a course, then he may have two grades for the same course (in different semesters), then CourseId, StudentId -> Grade is false.
5. We may actually have CourseId, StudentId, Semester -> Grade
· Hence, functional dependency is a result of the requirements and business logics of the applications.
· There is no universally true non-trivial functional dependency.
· In other words, functional dependencies depend on the semantic of the problems.
Example:
In most applications, we have
SSNum -> Name (i.e. a person has only one SSNum.)
However, in a criminal database, several bad guys may use the same fake SSNum, and thus
SSNum -> Name is not true.
Or, if you are dealing with an international data base with many countries. Each country may has its own SSNum. Two countries may issue the same SSNum. Hence,
SSNum -> Name is not true.
We may instead have SSNum, Country -> Name.
FALL 2018 HW #7
[2] Consider the following table: Grade. Grade(StudentId, StudentFName, StudentLame, ClassId, InstructorId, Grade) The table stores the grade information of a student (identified by StudentId) taking a class (identified by ClassId). A class is always taught by a single instructor (identified by InstructorId).
(a) Identify the functional dependencies (FD) of the relation.
Attributes: StudentId, StudentFName, StudentLame, ClassId, InstructorId, Grade
	StudentId
	SFN
	SLN
	ClassId
	InId
	Grade
	EnrollId

	S1
	Bun
	Yue
	T33351
	F123
	B
	1 (s)

	S1
	Bun
	Yue
	T12892
	F123
	C+
	2

	S1
	Ben
	Hur
	
	
	
	

	S2
	Ben
	Hur
	T33351
	F452
	
	

	S2
	Ben
	Hur
	T33351
	F123
	A-
	3

	S1
	Bun
	Yue
	T33351
	F123
	A
	Violates (t) {StudentId, ClassId} as a CK.

	
	
	
	
	
	
	

Current instance does not violate Grade -> StudentId.
Grade –X-> StudentId based on assumption.
Row #3 no no, StudentId has unique name (assumption StudentId uniquely identify a student who has a unique name to be stored.)
Row #4 no no, same classId -> same InId (assumption: a class is taught by only one instructor)
Row #6 no no: a student taking the same class has only grade.
Row #3:
StudentId -> SFN, SLN
Row #4: a classId determines a class. A class has one and only one instructor (identified by InId)
ClassId -> InId
Row #6:
StudentId, ClassId -> Grade
 functional dependency X -> Y;
X: {StudentId, ClassId}
Y : {Grade}
(b) What are the candidate keys?
(K) StudentId, ClassId -> StudentId, ClassId, SFN, SLN, InId, Grade, EnrollId (R: relation schema)
(K) Enroll -> StudentId, ClassId, SFN, SLN, InId, Grade, EnrollId
Candidate Keys:
(1) {StudentId, ClassId} composite candidate key (CK)
(2) EnrollId: simple surrogate key serves as the primary key.
{StudentId, ClassId}: CK, SK
· is unique -> identify a unique row.
· Minimal ->
· {StudentId} (proper subset of {StudentId, ClassId}) is not unique; StudentId –X-> R (StudentID -> StudentID, SFN, SLN)
· {ClassId} (proper subset of {StudentId, ClassId}) is not unique; ClassId -> ClassId, InId.
For {StudentId, ClassId, SFN}
1. Unique
2. Not minimal: {StudentId, ClassId} (a proper subset of {StudentId, ClassId, SFN}) -> R
SK examples:
· {StudentId, ClassId}: SK, also a CK
· {StudentId, ClassId, SFN}: SK, not a CK
· ENROLLID: SK, also a CK
· {ENROLLID, CLASSID}: SK, not a CK
(c) What are the non-prime attributes?

Candidate Keys:
(1) {StudentId, ClassId} composite candidate key (CK)
(2) EnrollId: simple surrogate key serves as the primary key.
Attributes not in any CK.
Grade(StudentId, StudentFName, StudentLame, ClassId, InstructorId, Grade, EnrollId)
Non-prime attributes: SFN, SLN, INId, Grade
Prime (key) attributes: in some CKs: StudentId, CLassId, EnrollId
Definition of FD:
· A relation scheme R is said to satisfy the functional dependency X -> Y if for any relation r that uses R, if there are two tuples s and t in r such that s[X] = t[X], then s[Y] = t[Y].
· Same value of X implies same value of Y.
Example: This instance of R does not violate X->Y.
	X
	Y
	Z

	'A'
	1
	110

	'A'
	1
	123

	'A'
	1
	345

	'B'
	2
	232

	'C'
	1
	110

	‘C’
	2
	2000 violates FD X->Y

This instance of R violates X->Z.
	X
	Y
	Z

	'A'
	1
	110

	'A'
	1
	123

	'A'
	1
	345

	'B'
	2
	232

	'C'
	1
	110

	'C'
	2
	212

In order to have X-> Y, all instances must not violate the conditions.
Example:
DEPT_NO -> MANAGER_NO:
There are no two tuples with the same DEPT_NO but different MANAGER_NO. A department has only one manager.
CourseId, StudentId, Semester -> Grade
There are no two tuples with the same CourseId, StudentId and Semester but different Grade. That is, any student taking a course in a semester has an unique grade. Note that it may not be true for a university. Instead, the following may be true:
CourseId, StudentId, Year, Semester -> Grade
Keys and Superkeys
· We can use functional dependencies to define keys and superkeys.
· For a relation scheme R, K is a candidate key (CK) if
1. Uniqueness: K -> R.
2. Minimality: there is no proper subset of K that determines R. (There is no extraneous attribute.)
· K is a superkey if K -> R. Superkeys (SK) do not need to satisfy the minimality requirement.
· Some properties:
1. If K is a CK, any superset of K is a SK.
2. If K is a CK, any proper subset of K is not a CK.
3. If K is a CK, any proper superset of K is not a CK.
· Note that the primary key of a table is just a selected candidate key used to structure the physical storage. It is just like other candidate keys (alternate keys) in the context of the normalization theory.
· A CK with only one attribute is known as a simple key. A CK with more than one attributes is known as a composite key.
Some properties of Functional Dependency
· Transitivity: X-> Y and Y->Z => X->Z (X: classId, Y: InId, Z: InstLName)
· Augmentation: X->Y => XA -> YA (X: classId, Y: InId, A studentId => classId, StudentId -> InId, StudentId)
· Reflexivity: if Y is a subset of X, then X-> Y ({classId, SFN} -> SFN
· Union: X->Y and X->Z => X->YZ X: StudentId, Y: SFN, Z-> SLN
· Decomposition: X->YZ => X->Y and X->Z
Example:
AB -> C => A-> B? {StuId, ClassId} -> Grade => StuId -> Grade? No
Example
In EMPLOYEE(EMP_NO, DEPT_NO, MANAGER_NO) with
EMP_NO -> DEPT_NO and
DEPT_NO -> MANAGER_NO.
By transitivity, EMP_NO -> MANAGER_NO
By union rule, EMP_NO -> EMP_NO, DEPT_NO, MANAGER_NO
By augmentation, EMP_NO, MANAGER_NO -> DEPT_NO, MANAGER_NO

Hence, EMP_NO is a (candidate) key of EMPLOYEE(EMP_NO, DEPT_NO, MANAGER_NO).
On the other hand, DEPT_NO is not a candidate key since we do not have DEPT_NO -> EMP_NO.
Furthermore, there are four superkeys:
1. EMP_NO
2. EMP_NO, DEPT_NO
3. EMP_NO, MANAGER_NO
4. EMP_NO, DEPT_NO, MANAGER_NO
Closure of Attributes
· Given a set of FD F, the closure of a set of attributes X, denoted as X+, is the set of all attributes functionally determined by X.
X+ = every attribute determined by X.
Example
Consider R(A,B,C,D) with
F = {B->A, A->C, AB->D, D->AC}
A+ = AC
B+ = ABCD
C+ = C
D+ = ACD
Thus, B is a candidate key (CK).
No proper superset of B is a candidate key (since it will not be minimal).
Remaining non-empty subset of ABCD to check:
AC+ = AC
AD+ = ACD
CD+ = ACD
ACD+ = ACD
Thus, B is the only CK.
· The closure of attributes can be used for other purposes, such as checking validity of FD, computing closure of a set of functional dependencies, checking equivalence of two set of FDs, etc.
Finding Candidate keys
· It is necessary to find all candidate keys to conduct normalization analysis.
· In general, if R has n attributes, there are 2n -1 subsets of R which are potential candidate keys.
Example:
For R(A,B,C), need to check A, B, C, AB, AC, BC and ABC for candidate keys.
Thus, the problem is O(en).
To find all candidate keys for a set of FD, F:
1. Additional Material: Find the canonical cover, FC, first. This simplifies F. (This step is optional.)
2. Use heuristics to cut down the number of sets of attributes to check.
3. Use classification of attributes into three groups
1. If X does not appear in the RHS of any f in FC, every candidate key must include X.
2. If X appears in the RHS of a fd in FC but does not appear in the LHS of any f in FC, then x is not a part of any candidate key.
3. If X appears in LHS in some FD and in RHS in some other FD, then X can potentially be in a CK.
4. If X is found to be a CK, then any proper superset of X is not a CK and needs not be checked.
Q1. R(A,B,C,D): CK: (1) AB (unique and minimal)
How many superkeys? AB, ABC (unique and not minimal), ABD (unique and not minimal), ABCD (unique and not minimal): 4
M = # of attributes in R.
One CK: N attributes.
M =4, N = 2
of superkey = 2 ** (M-N) = 4
Q2. R(A,B,C,D,E,F) CK: (1) AB
of superkeys:
AB (+ or – C), (+ or – D) (+ or – E) (+ or – F)
E.g. ABD is SK
of SK = s ** 4 = 16
Q3. R(A,B,C,D): CK: (1) A, (2) B
of superkeys: 12
A, AB, AC, AD, ABC, ABD, ACD, ABCD (contains A)
B, BC, BD, BCD (Contains B but not A)
Example
Consider the following relation:
Supply(SupplierId, SupplierName, ProductId, ProductDesc, Quantity, ArrivalTime)
The relation stores the quantities and arrival times of shipments of products (identified by ProductId) from suppliers (Identified by SupplierId). A supplier may not have a unique name. Furthermore, the product description, ProductDesc, may be the same for two products. A supplier may supply the same product many times, each with a different ArrivalTime.
The functional dependencies (FD) of the relation:
SupplierId -> SupplierName
ProductId -> ProductDesc
SuplierId, ProductId, ArrivalTime -> Quantity
Decomposition:
Supplier(SupplierId, SupplierName) {SupplierId -> SupplierName}
Product(ProductId, ProductDesc) {ProductId -> ProductDesc}
Supply(SuplierId, ProductId, ArrivalTime, Quantity) {SuplierId, ProductId, ArrivalTime -> Quantity}
2. Normal Forms Using Functional Dependencies
First Normal Form
· A relation is in 1NF if all attribute values are atomic: no repeating group, no composite attributes.
· Formally, a relation may only has atomic attributes. Thus, all relations satisfy 1NF.
· In practice, DBMS may allow data types with composite values, e.g. set.
Example
Consider the following table with 3 records. It is not in 1 NF.
	DEPT_NO
	MANAGER_NO
	EMP_NO
	NAME

	D123
	54321
	10000, 12000, 13000
Not atomic
	Lady Gaga, Eminem, Lebron James ot atomic

	D225
	42315
	21000, 22000
	Rajiv Gandhi, Bill Clinton

	D337
	33323
	31000
	John Smithson

The corresponding relation with 6 tuples is in 1 NF: atomicity related to requirements. i.e. Singled-valued.
	DEPT_NO
	MANAGER_NO
	EMP_NO
	NAME

	D123
	54321
	10000
	Lady Gaga

	D123
	54321
	12000
	Eminem

	D123
	54321
	13000
	Lebron James (may be considered not atomic)

	D225
	42315
	21000
	Rajiv Gandhi

	D225
	42315
	22000
	Bill Clinton

	D337
	33323
	31000
	John Smithson

· Why atomic? relational theory and operations treat attributes as atomic.
· Relations satisfying only 1NF has unnecessary redundancy and anomalies.
Example
Consider the tuple (EmpId: 12345, OSSkills: {Windows, Linux, Solaris}).
· It will be difficult to identify all employees with Linux skills.
· It will be difficult to join using OSSkills.
· Data entry problems and issues, e.g. Linux linux, linx, etc., may further degrade data quality and introduce inconsistency.
Second Normal Form
· A relation R is in 2NF if
1. R is in 1NF, and
2. all non-prime attributes are fully dependent on the candidate keys.
· A prime attribute appears in a candidate key. Otherwise, it is a non-prime attribute. Note that a relation may have many candidate keys.
· A non-prime attribute does not appear in any candidate key.
· There is no partial dependency in 2NF.
· If X -> A, A is a non-prime attribute, and X is a subset of a candidate key K, then X = K.
Example
The following relation is not in 2NF. (Assume the number of credits of a given course does not change). Note the redundancy and anomalies.
Enroll(Course, Credit, Student, Grade)
	Course
	Credit
	Student
	Grade

	C1
	3
	S1
	A

	C1
	3
	S2
	B

	C1
	3
	S3
	B

	C2
	2
	S1
	A

	C2
	2
	S4
	D

That is, we assume the following FDs.
1. Course -> Credit: violate 2NF
2. Course, Student (Full CK) -> Grade (non-prime): not violating 2NF
Not appear in RHS: Course, Student (every CK should have Course, Student)
Only in RHS: Credit, Grade (Credit, Grade not in any CK)
CK: (1) Course, Student
Thus,
1. Course, Student is the only candidate key.
2. Prime attributes: Course, Student
3. Non-prime attribute: Credit, Grade.
4. FD (1) is a violation of 2NF.
Course (part of a CK) -> Credit (non-prime)
To convert to 2NF, decompose Enroll into
1. Enroll(Course [FK], Student, Grade): CK: (1) Course, Student
2. Class(Course [PK], Credit): CK: Course
Example from Hoffer (Partial):
Invoice(OrderId, OrderDate, ProductId, ProductName, Quantity)
FD: An order maybe for a purchase of multiple products
1. OrderId (a part of a CK) -> OrderDate (non-prime): violate 2NF
2. ProductId (a part of a CK) -> ProductName (non-prime): violate 2NF
3. OrderId, ProductId (a full CK) -> Quantity (non-prime): does not violate 2NF
	OI
	OD
	PI
	PN
	Q

	O1
	11/13/2019
	P1
	SO and So
	3

	O1
	11/13/2019
	P2
	X and Y
	2

	O1
	11/13/2019
	P3
	Ice cream
	5

	O2
	11/11/2019
	P2
	X and Y
	1

CK: (1) OrderId, ProductId
Prime attributes: OrderId, ProductId
Non-prime attributes: OrderDate, ProductName, Quantity
FD 1 and 2 violate 2NF
To convert to 2NF, decomposition:
1. Order(OrderId, OrderDate) with {OrderId -> OrderDate}
2. Product(ProductId, ProductName) with {ProductId -> ProductName}
3. OrderLine(OrderId, ProductId, Quantity) {OrderId, ProductId -> Quantity}
Order(OrderId, OrderDate) with {OrderId -> OrderDate}
	OI
	OD

	O1
	11/13/2019

	O2
	11/11/2019

Product(ProductId, ProductName) with {ProductId -> ProductName}

	PI
	PN

	P1
	SO and So

	P2
	X and Y

	P3
	Ice cream

OrderLine(OrderId, ProductId, Quantity) {OrderId, ProductId -> Quantity}
	OI
	PI
	Quantity

	O1
	P1
	3

	O1
	P2
	2

	O1
	P3
	5

	O2
	P2
	1

CK: {OrderId, ProductId}
E.g. R(A,B,C) {A->B, BC->A}
C in every CK (because C not in any RHS)
A and B in both LHS and RHS (A, B may be in a CK.)
Check:
C: C+ = C
CA; CA+ = CAB (CA is a CK)
CB; CB+ = CBA (CB is a CK)
CAB: not minimal.
CK: (1) CA, (2) CB
Prime attributes: C, A, B
Non-prime attributes: no
2NF only check for non-prime attribute in RHS.
A (a part of a CK) -> B (prime): does not violate 2NF.
BC(full CK) ->A (prime): does not violate 2NF.
In 2NF
Third Normal Form
· (New definition) A relation R is said to be in the third normal form if for every non-trivial functional dependency X -> A,
1. X is a superkey, or
2. A is a prime (key) attribute.
· (Old definition) A relation R is in 3NF if
1. R is in 2NF, and
2. There is no transitive dependency of nonkey attributes on the candidate keys.
· 3NF cannot eliminate all redundancy due to functional dependencies.
X->A violates 3NF if (1) X is not a superkey, and (2) A is non-prime.
E.g. R(A,B,C) {A->B, BC->A}
In 3NF because all attributes are prime.
Example
· The following relation may be in 2NF, but is not in 3NF.
	DEPT_NO
	MANAGER_NO
	EMP_NO
	NAME

	D123
	54321
	10000
	Lady Gaga

	D123
	54321
	12000
	Eminem

	D123
	54321
	13000
	Lebron James

	D225
	42315
	21000
	Rajiv Gandhi

	D225
	42315
	22000
	Bill Clinton

	D337
	33323
	31000
	John Smithson

· If we assume the following canonical set of FDs:
1. EMP_NO -> NAME, DEPT_NO
2. DEPT_ NO (not a SK) -> MANAGER_NO (non-prime attribute): violates 3NF
DEPT_NO+ = DEPT_NO, MANAGER_NO
· then
. There is only one candidate key: EMP_NO (only simple CK -> in 2NF)
. Prime attributes: EMP_NO
. Non-prime attributes: NAME, DEPT_NO, MANAGER_NO.
. The relation is in 2NF.
· [bookmark: _GoBack]The relation is not in 3NF because of
. (old definition): the FD EMP_NO -> MANAGER_NO can be deduced from transitivity via the non-prime attribute DEPT_NO.
. (new definition):
2. EMP_NO is the only candidate key.
2. EMP_NO is prime
2. DEPT_NO and MANAGER_NO are non-prime.
2. DEPT_NO -> MANAGER_NO violates 3NF.
Example
Consider the relation
S(SNUM, PNUM, SNAME, QUANTITY) with the following assumptions:
1. SNUM is unique for every supplier.
2. SNAME is unique for every supplier.
3. QUANTITY is the accumulated quantities of a part supplied by a supplier. Given a supplier and a part, the quantity is unique.
4. A supplier can supply more than one part.
5. A part can be supplied by more than one supplier.
We have the following non-trivial functional dependencies:
1. SNUM -> SNAME
2. SNAME -> SNUM
3. SNUM PNUM -> QUANTITY
4. SNAME PNUM -> QUANTITY
Note that SNUM and SNAME are equivalent.
The candidate keys are:
1. SNUM PNUM
2. SNAME PNUM
Prime attributes: SNUM, PNUM, SNAME
Non-prime attribute: QUANTITY.
The relation is in 3NF. However, there are unnecessary redundancy.
	SNUM
	SNAME
	PNUM
	QUANTITY

	S1
	ABC
	P1
	10

	S1
	ABC
	P2
	20

	S1
	ABC
	P3
	21

	S2
	DEF
	P1
	40

	S2
	DEF
	P4
	13

	S3
	XYK
	P3
	18

Example
Consider the relation R(CITY, STREET, ZIP) with the FDs:
1. CITY STREET -> ZIP, and
2. ZIP -> CITY.
There are two candidate keys:
1. CITY STREET, and
2. ZIP STREET
Hence, all attributes are prime attributes and the relation is in both 2NF and 3NF.
· 3NF does not eliminate all redundancy due to functional dependencies.
BCNF (Boyce-Codd Normal Form)
· A relation R is said to be in BCNF if for every non-trivial functional dependency X -> A in R, X is a superkey.
Example
EMPLOYEE(EMP_NO, NAME, DEPT_NO, MANAGER_NO) with
EMP_NO -> NAME
EMP_NO -> DEPT_NO
DEPT_NO -> MANAGER_NO
is not in BCNF.
The functional dependency DEPT_NO -> MANAGER_NO is
(1) non-trivial, and
(2) DEPT_NO is not a superkey.

· Recall that this is the example we used for illustrating bad design.
· This is also not in 3NF.
We can decompose
EMPLOYEE(EMP_NO, NAME, DEPT_NO, MANAGER_NO) into
EMP(EMP_NO, NAME, DEPT_NO) with
EMP_NO -> NAME, DEPT_NO
and
DEPARTMENT(DEPT_NO, MANAGER_NO) with
DEPT_NO -> MANAGER_NO
Both relations are in BCNF since
· EMP_NO is a superkey of the relation EMP.
· DEPT_NO is a superkey of the relation DEPARTMENT.
Recall that these are the good relations without the anomalies in the previous example.
Example
Consider again the relation
S(SNUM, PNUM, SNAME, QUANTITY) with the following non-trivial functional dependencies:
1. SNUM -> SNAME
2. SNAME -> SNUM
3. SNUM PNUM -> QUANTITY
4. SNAME PNUM -> QUANTITY
Note that SNUM and SNAME are equivalent.
The candidate keys are:
1. SNUM PNUM
2. SNAME PNUM
Prime attributes: SNUM, PNUM, SNAME
Non-prime attribute: QUANTITY.
S is not in BCNF because, for example, the functional dependency
SNUM -> SNAME is
· non-trivial, and
· SNUM is not a superkey.
To deal with it, we can decompose S(SNUM, PNUM, SNAME, QUANTITY) into
(1) SUPPLIER(SNUM, SNAME) with
SNUM -> SNAME
SNAME -> SNUM
with two candidate keys:
1. SNUM
2. SNAME
(2) SUPPLY(SNUM, PNUM, QUANTITY) with
SNUM, PNUM -> QUANTITY.
Both are in BCNF.
Example:
Consider the relation R(A, B, C, D) with
A -> B, B -> C, C -> A and C -> D.
There are three candidate keys:
1. A
2. B
3. C
Since every left hand side of any non-trivial functional dependency is a superkey, R is in BCNF.
Motivation of BCNF
· The purpose of BCNF is to eliminate any unnecessary redundancy that functional dependencies can create in a relation.
· In a BCNF relation, no value can be predicted from any other attributes, using only functional dependencies.
· This is because in a BCNF relation, using functional dependencies only,
· any value can only be determined by a superkey,
· but the superkey is unique.
· However, there are other type of dependencies.
· Therefore, there are higher normal forms.
Example
Consider the relation R(CITY, ZIP, STREET)

Using the code for the postal office, we have
CITY STREET -> ZIP, and ZIP -> CITY.
Hence, there are two candidate keys:
1. CITY STREET, and
2. ZIP STREET
Therefore, R is not in BCNF since in ZIP -> CITY, ZIP is not a superkey.
However, if we decompose R into two relations, each with two attributes, then the functional dependency
CITY STREET -> ZIP is lost (i.e. cannot be enforced within a single relation)
Therefore, we better leave the relation alone.
· Sometimes it is not possible for a relation to be in BCNF ==> need a less strict normal form (3NF).
Normalization Theory Using Functional Dependencies
· To use the theory on functional dependency:
· For a relation of a set of attributes, we analyze the assumptions of the applications.
· From the assumptions, we obtain the functional dependencies.
· We determine the candidate keys and prime attributes.
· If the relation is not in BCNF, we perform decomposition.
· If BCNF cannot be satisfied, we aim for 3NF.
Example
Consider the following relation:
Supply(SupplierId, SupplierName, ProductId, ProductDesc, Quantity, ArrivalTime)
The relation stores the quantities and arrival times of shipments of products (identified by ProductId) from suppliers (Identified by SupplierId). A supplier may not have a unique name. Furthermore, the product description, ProductDesc, may be the same for two products. A supplier may supply the same product many times, each with a different ArrivalTime.
The functional dependencies (FD) of the relation:
SupplierId -> SupplierName
ProductId -> ProductDesc
SuplierId, ProductId, ArrivalTime -> Quantity
CK: {SupplierId, ProductId, ArrivalTime}
Non-prime attributes: SupplierName, ProductDesc, Quantity
Highest Normal Form: 1NF
SupplierId -> SupplierName violates 2NF since SupplierId is a part of a candidate key and Quantity is non-prime.
3. Decomposition
· Decomposition is a major tool for constructing relations satisfying high enough normal forms.
· Decomposition should be disciplined:
· More relations may be less efficient in storage.
· More relations may be less efficient in executing queries.
· Some decompositions are harmful:
· Lossy decompositions.
· Decompositions that do not preserve dependencies.
· Hence, it is important to have lossless dependency-preserving decomposition.
Lossy Decomposition
Example:
Consider the relation EMP(EMP_NO, DEPT_NO, MGR_NO) with
EMP_NO -> DEPT_NO
DEPT_NO -> MGR_NO
Note that we do not have MGR_NO -> DEPT_NO in this example, since a manager can manage more than one departments under the assumptions made for this example.
	EMP_NO
	DEPT_NO
	MGR_NO

	12345
	ACCT
	90000

	12399
	HR
	90000

	30000
	ENG
	98000

The relation is not in BCNF because of the FD
DEPT_NO -> MGR_NO
Suppose we decompose the relation into
EMP1(EMP_NO, MGR_NO)
DEPT(DEPT_NO, MGR_NO)

The common attribute is MGR_NO. They are obtained by projections from EMP:
EMP1:
	EMP_NO
	MGR_NO

	12345
	90000

	12399
	90000

	30000
	98000

DEPT:
	DEPT_NO
	MGR_NO

	ACCT
	90000

	HR
	90000

	ENG
	98000

If we do not loss any information by the decomposition, we should get the original relation from the natural join.
However, EMP1 |x| DEPT is
	EMP_NO
	DEPT_NO
	MGR_NO

	12345
	ACCT
	90000

	12345
	HR
	90000

	12399
	ACCT
	90000

	12399
	HR
	90000

	30000
	ENG
	98000

This is not the same as the original relation EMP. Spurious tuples were incorrectly created.
Hence, the decomposition of EMP(EMP_NO, DEPT_NO, MGR_NO) into

EMP1(EMP_NO, MGR_NO) and
DEPT(DEPT_NO, MGR_NO)
is lossy. It is not a good decomposition.
Lossless Decomposition
Example:
Consider now the following decomposition of EMP(EMP_NO, DEPT_NO, MGR_NO):
EMP2(EMP_NO, DEPT_NO) and
EMP3(EMP_NO, MGR_NO)
The common attribute is EMP_NO. We have EMP2 and EMP3:
EMP2:
	EMP_NO
	DEPT_NO

	12345
	ACCT

	12399
	HR

	30000
	ENG

EMP3:
	EMP_NO
	MGR_NO

	12345
	90000

	12399
	90000

	30000
	98000

Hence, EMP2 |x| EMP3:
	EMP_NO
	DEPT_NO
	MGR_NO

	12345
	ACCT
	90000

	12399
	HR
	90000

	30000
	ENG
	98000

This is exactly the same as the original relation EMP. Therefore, the decomposition does not loss any information. It is a lossless decomposition.
Theory of Lossless Decomposition
Example:
Why is the decomposition of EMP(EMP_NO, DEPT, MGR_NO) into
(1) EMP1(EMP_NO, MGR_NO) and DEPT(DEPT_NO, MGR_NO) lossy, and
(2) EMP2(EMP_NO, DEPT) and EMP3(EMP_NO, MGR_NO) lossless?
Theorem: Suppose R(X, Y, Z) is decomposed into R1(X, Y) and R2(X, Z). X is the set of common attributes in R1 and R2. The decomposition is lossless if and only if
(a) X -> Y, or
(b) X -> Z.
Example:
In case (1), X is MGR_NO, Y is EMP_NO, Z is DEPT.
Neither condition (a) not (b) is satisfied. Hence, (1) is lossy.
In case (2), X is EMP_NO, Y is DEPT_NO, Z is MGR_NO.
Both conditions (a) and (b) are satisfied. Hence, (2) is lossless.
· For decompositions into more than two relations, use the chase matrix algorithm, which is not covered in this course.
Dependency-Preserving Decomposition
Example:
For the relation EMP(EMP_NO,DEPT_NO,MGR_NO) with
EMP_NO -> DEPT_NO
DEPT_NO -> MGR_NO,
The decomposition of EMP into
EMP2(EMP_NO, DEPT_NO) and
EMP3(EMP_NO, MGR_NO)
is lossless but does not preserve dependencies:
the FD DEPT_NO -> MGR_NO
cannot be enforced by any relation after the decomposition. No relation contains both attributes.
For example, if we add the information EMP 23000 work in the ACCT department under manager 97000 and are not careful, we may have:
 EMP2:
	EMP_NO
	DEPT

	12345
	ACCT

	12399
	HR

	30000
	ENG

	23000
	ACCT

EMP3:
	EMP_NO
	MGR_NO

	12345
	90000

	12399
	90000

	30000
	98000

	23000
	97000

The FD DEPT_NO -> MGR_NO is violated.
Thus, for the relation EMP(EMP_NO,DEPT_NO,MGR_NO) with
EMP_NO -> DEPT_NO
DEPT_NO -> MGR_NO,
the best decomposition is into
EMP1(EMP_NO, DEPT_NO) and
DEPT(DEPT_NO, MGR_NO)
It is easy to show that, the decomposition is lossless, preserves dependencies, and that EMP1 and DEPT are both in BCNF.
· It is possible to decompose a relation such that
· all member relations are in 3NF,
· the decomposition is lossless, and
· all FDs are preserved.
· It is also possible to decompose a relation such that
· all member relations are in BCNF, and
· the decomposition is lossless, but
· not all FDs may be preserved.
Algorithm for decomposition in 3NF relations (not covered)
· There are many algorithms for decomposition.
· In particular, the following example shows the step of an lossless, FD preserving algorithm that guarantees 3NF.
· Since we do not study canonical cover in this course, step 1 may be hard.
Example:
Consider R(A,B,C,D,E) with F = {A->BC, CD -> E, BA -> C, D->B}.
Step 1. Find a canonical cover G for F. (Loosely speaking, an equivalence of F with the least number of FD and attributes)
The FD BA->C is redundant.
G = {A->BC, CD -> E, D->B}.
Step 2. For every FD X->Y in G, create a relation with the schema XY and add it to the result D.
Relations created:
R1(A,B,C) with A->BC
R2(C,D,E) with CD->E
R3(B,D) with D->B
It can be seen very easily that R1, R2 and R3 are all in 3NF. Furthermore, all FDs are preserved.
Step 3. If no relation in D contains a candidate key of R, create a new relation with a candidate key of R being the schema and add it to the result D.
There is only one candidate key of R: AD. Since none of R1, R2 and R3 contains A, create the relation
R4(A,D) with no FD
Step 4. Simplify D by removing relations that are redundant (i.e. that its schema is a subset of the schema of another relation).
No action as there is no redundant relation.
The result relations are all in BCNF.
Example:
Consider R(A,B,C,D,E) with {A->BCD, BC->D, D->C}
Using the algorithm,
(1) Canonical cover: {A->BC, BC->D, D->C}
(2) The following relations are created:
R1(A,B,C) with {A-> BC},
R2(B,C,D) with {BC->D, D->C},
R3(C,D) with {D->C}
(3) There is only one candidate key AE. Since it is not in any of R1, R2 or R3, R4 is created.
R4(A,E)
(4) R3(C,D) is removed as redundant.
As in result, we have:
R1(A,B,C) with {A-> BC}, in BCNF
R2(B,C,D) with {BC->D, D->C}, in 3NF but not in BCNF
R4(A,E) with {}, in BCNF
· There are other decomposition algorithms.
· Sometimes, it is not possible to decompose a relation into two relations losslessly and preserve all FD, just to achieve BCNF.
Example:
Consider the relation R(A, B, C) with A -> B and C -> B.
R is not in 2NF. It is not possible to decompose R into two relations losslessly while preserving all functional dependencies.
However, it is possible to decompose into three relations losslessly and with all functional dependencies preserved:
R1(A, B),
R2(B, C) and
R3(A, C).

image1.gif
Universe of ralations (nermalizéd and uinsrimalized)

INF relations (fgrmialized rél
2NF relations ‘
3NF ralations
BCNF relatiens
4NF relations

PI/NE (BNF) Faiationg

|

