## CSCI 5333.1 DBMS Fall 2021

## Suggested Solution for HW \#8

[1] $F=\{B->A, A C->D, C D->F, F->E\}$

To prove BC-> E

Proof. For example:
[1] B->A (given)
[2] AC->D (given)
[3] BC->D (pseudo-transitivity rule on [1] and [2]).
[4] CD->F (given)
[5] BCC -> F (pseudo-transitivity rule on [4] and [3]).
[6] BC-> F (simplification of [5])
[7] F -> E (given)
[8] AE-> F (transitivity of [6] and [7]).
[2] Consider $F=\{A->B, B C->D E, A B->E, D E->C, A E->C D\}$
(a) $\mathrm{A}+=\mathrm{ABCDE}, \mathrm{B}+=\mathrm{B}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D}, \mathrm{E}+=\mathrm{E}$
(b) The candidate key is A
(c) Prime: A, non-prime: BCDE
(d) $\{A->B C, B C->D E, D E->C\}$
(e) $2 N F$ since $B C->D$ or $B C->E$ violates $3 N F$ : $D$ and $E$ non-prime and $B C$ is not a superkey. $D E->C$ is also a violation.
(f) No, the best decomposition has a relation not in BCNF:

R1 ( $A, B, C$ ) $\{A->B C\}$ in BCNF
$R 2(B, C, D, E)\{B C->D E, D E->C\}$ is in 3NF but not in BCNF.
$[3] F=\{C D->B, B C->D, D->A, F->D E, F D E->A C, B->F\}$
(a) $\mathrm{A}+=\mathrm{A}, \mathrm{B}+=\mathrm{ABCDEF}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{AD}, \mathrm{E}+=\mathrm{E}, \mathrm{F}+=\mathrm{ABCDEF}$
(b) The candidate keys are $B, F$ and $C D$
(c) Prime: BCDF; non-prime: AE
(d) $\{B->F, D->A, C D->B, F->C D E\}$
(e) 1 NF . $\mathrm{D}->\mathrm{A}$ is a violation of 2 NF .
(f) The decomposition into $R 1(B, C, D, E, F)\{B->F, C D->B, F->C D E\}$ and $R 2(A, D)\{D->A\}$ are lossless and $F D$ preserving. $R 1$ and $R 2$ are in $B C N F$. Further decomposition of $R 1(B, C, D, E, F)$ is also acceptable but not preferrable.
(a) $R(A, B, C, D)\{A->C\}$ : Highest NF: 1NF; CK: [1] ACD; A->C violates $2 N F$.
(b) $R(A, B, C, D)\{A->B, B->A, A->C, C->D, D->A B\}:$ Highest NF: BCNF; CK: [1] A, [2] B, [3] C, [4] D.
(c) $R(A, B, C, D, E)\{A B->C D, C->A B E\}$ : Highest NF: BCNF; CK: [1] AB, [2] C.
(d) $R(A, B, C, D, E)\{A B C->D, E->D\}$ : Highest NF: 1NF; CK: [1]ABCE; Both FDs violate 2NF.
(e) $R(A, B, C, D, E)\{A B C->D, D->E\}$ : Highest NF: 2NF; CK: [1] ABC; D->E violates 3NF
(f) $R(A, B, C, D, E)\{A B C E->D, D->B E\}$ : Highest NF: 3NF; CK: [1] ABCE, [2] ACD; D->BE violates BCNF.
[5] $R(A, B, C, D, E)\{A B->C, A->D, B E->A, A D->C E\}$ is decomposed into $R 1(A, B, C), R 2(A, C, D, E)$ and $R 3(A, B, E)$.
The decomposition is lossless. We start by obtaining a canonical cover of F :
$\{A B->C, A->C D E, B E->A\}$
The decomposition of $R$ into $R 1(A, B, C)$ and $R^{\prime}(A, B, C, D, E)$ is lossless since the common attributes are $A B C$, which is a superkey in R1. The further decomposition of $R^{\prime}$ into $R 2(A, C, D, E)$ and $R 3(A, B, E)$ is also lossless since the common attributes are $A E$ and $A E->C D$ in R2. Thus, the overall decomposition is lossless.

Using the chase matrix algorithm:
We use the canonical form: $\{A B->C, A->C D E, B E->A\}$
Step 1. Create a table of 5 columns (number of columns and 4 rows (number of relations). Populate it with $\mathrm{b}[\mathrm{i}, \mathrm{j}]$.

| Relation | A | B | C | D | E |
| :--- | :---: | :---: | :---: | :---: | :---: |
| R1 | $\mathrm{b}[1,1]$ | $\mathrm{b}[1,2]$ | $\mathrm{b}[1,3]$ | $\mathrm{b}[1,4]$ | $\mathrm{b}[1,5]$ |
| R2 | $\mathrm{b}[2,1]$ | $\mathrm{b}[2,2]$ | $\mathrm{b}[2,3]$ | $\mathrm{b}[2,4]$ | $\mathrm{b}[2,5]$ |
| R3 | $\mathrm{b}[3,1]$ | $\mathrm{b}[3,2]$ | $\mathrm{b}[3,3]$ | $\mathrm{b}[3,4]$ | $\mathrm{b}[3,5]$ |

Step 2. For each relation Ri, set all attribute Aj that appears in Ri from b[i,j] to a[j].

| Relation | A | B | C | D | E |
| :--- | :---: | :---: | :---: | :---: | :---: |
| R 1 | $a[1]$ | $a[2]$ | $a[3]$ | $\mathrm{b}[1,4]$ | $\mathrm{b}[1,5]$ |
| R 2 | $a[1]$ | $\mathrm{b}[2,2]$ | $a[3]$ | $a[4]$ | $a[5]$ |
| R 3 | $a[1]$ | $a[2]$ | $\mathrm{b}[3,3]$ | $\mathrm{b}[3,4]$ | $a[5]$ |

Step 3. While changes can be made with a FD X-> Y, with two rows in the table having the common $X$ values in the following manner:
for every attribute W in Y :

- If one cell is an a and the other cell is an $b$, change the $b$ to the $a$.
- If both cells are b's, change them to the same b.


## Applying A->CDE

| Relation | A | B | C | D | E |
| :--- | :---: | :---: | :---: | :---: | :---: |
| R1 | $\mathrm{a}[1]$ | $\mathrm{a}[2]$ | $\mathrm{a}[3]$ | $a[4]$ | $a[5]$ |
| R2 | $\mathrm{a}[1]$ | $\mathrm{b}[2,2]$ | $\mathrm{a}[3]$ | $\mathrm{a}[4]$ | $\mathrm{a}[5]$ |
| R3 | $\mathrm{a}[1]$ | $\mathrm{a}[2]$ | $a[3]$ | $a[4]$ | $\mathrm{a}[5]$ |

Since there are rows with all a's, the algorithm halts and declares that the decomposition is lossless.
[6]
[a] Maximum = 24 (e.g., when the two CKs are [1] A, and [2] B) and minimum = 3 (e.g., when the two CKs are [1] ABCD and [2] ABCE.
[b] Yes, it is also in BCNF.
Proof. Suppose we can find such a relation $R$ that is in 3NF but not in BCNF. Since $R$ is not in BCNF, there must be a non-trivial FD X->Y in a minimal cover of $R$ such that it violates BCNF but not 3NF. In other words, $X$ must not be a SK but $Y$ is prime. Let $K$ be the $C K$ that contains $Y$ (and thus making $Y$ a prime attribute). Note that $X$ and $Y$ are disjoint. Thus, $K \cup X-Y->K U X->R$. Thus, $K \cup X-Y$ is a SK without $Y$. It is now possible to find a second CK from it that is distinct from $K$, violating the assumption that there is only one CK.
[c] No. The following two example scenarios result in exactly five superkeys but they have different numbers of candidate keys.
[1] CK: [1] ABC, [2] ABDE => SK: [1] ABC, [2] ABCD, [3] ABCE, [4] ABCDE, [5] ABDE.
[2] CK: [1] ABCD, [2] ABCE, [3] ABDE, [4] ACDE => SK: [1] ABCD, [2] ABCE, [3] ABDE, [4] ACDE, [5] ABCDE

