9/21/2021
Self-annotation:
Excel’s table:
1. Data model: 2-d array.
a. Ordered: indices.
b. Duplicate allowing
2. no primary key
3. No domain.
RDB table:
1. Set-theoretic:
a. Unordered
b. No duplicated: {1,1,2,2} = {2,1}
2. primary key.
3. Relationship between the tables.
4. Easier to query by SQL.
Student table:
{stuId} is unique
{stuId, fname} is unique? Yes. Fname is not needed. Not minimal.

Superkey is unique but may or may be minimal.
{stuId, classId} is a candidate key (composite) of the table Enroll.
{stuId} is a simple CK of the table Student.

What is the key of the database toyu? Bad question.
Right Q: what are the candidate keys of the table Student? StuId.
Meaning and scope of concepts.
A foreign key of a relation is a set of attributes that is a candidate key in a parent relation.
Major is a foreign key of the student table references department(deptCode).
E.g.
SELECT DISTINCT s.stuId, d.deptName AS `Major subject`
FROM student AS s INNER JOIN department AS d
	ON (s.major = d.deptCode)

CREATE TABLE IF NOT EXISTS Student (
 stuId INT NOT NULL,
 fname VARCHAR(20) NOT NULL,
 lname VARCHAR(20) NOT NULL,
 major VARCHAR(4) NULL,
 minor VARCHAR(4) NULL,
 credits integer(3) DEFAULT 0,
 advisor INT NULL,
 CONSTRAINT Student_stuId_pk PRIMARY KEY(stuId),
 CONSTRAINT Student_credits_cc CHECK ((credits>=0) AND (credits < 250)),
 CONSTRAINT Student_major_fk FOREIGN KEY (major)
 REFERENCES Department(deptCode) ON DELETE CASCADE,
 CONSTRAINT Student_minor_fk FOREIGN KEY (minor)
 REFERENCES Department(deptCode) ON DELETE CASCADE,
 CONSTRAINT Student_advisor_fk FOREIGN KEY (advisor)
 REFERENCES Faculty(facId)
);

CREATE TABLE IF NOT EXISTS Enroll(
 stuId INT NOT NULL,
 classId INT NOT NULL,
 grade VARCHAR(2),
 n_alerts INT,
 CONSTRAINT Enroll_classId_stuId_pk PRIMARY KEY (classId, stuId),
 CONSTRAINT Enroll_classNumber_fk FOREIGN KEY (classId)
 REFERENCES Class(classId) ON DELETE CASCADE,
 CONSTRAINT Enroll_stuId_fk FOREIGN KEY (stuId)
 REFERENCES Student (stuId) ON DELETE CASCADE,
 CONSTRAINT Enroll_grade_fk FOREIGN KEY (grade)
 REFERENCES Grade (grade) ON DELETE CASCADE
);

1 composite PK + 3 FK.
Classes
C1. A class C is mapped to a relation RC.
1. Relations may later be merged in design refinement and performance tuning.
2. The relation may use the same name as the class.
Attributes
ATT1. (Basic) Include all single-valued attributes (with simple data types) of a class C as the attributes of RC, the relation for the class C.
ATT2. (Basic) For each multi-valued attribute A of the class C, create a new relation RCA containing the attribute A and the primary key, RCId, of the relation RC (which implements the class C).
1. (RCId, A) is a composite candidate key.
2. RCId is a foreign key referencing RC(RCId)
3. A surrogate key, such as RCA_Id, may be created to serve as a simple candidate key, to be selected as the primary key.
4. The name of RCA should be meaningfully selected.
ATT3. A single-valued attribute of composite data type (such as set, list, array) can be mapped in various ways.
1. If there is an comparable composite data type in the targeted DBMS, it can be implemented as an attribute of that data type in the relation.
· The relation will no longer be in the first normal form.
· Care should be taken in handling the difference in data type mapping.
2. Otherwise, regard the attribute as a multi-valued attribute and apply rule ATT2.
ATT4. For a derived attribute A: (not independent: e.g. GPA)
	stuId
	FName
	GPA (derived: computed)

	11111
	Bun
	3.1 -> 4.0 (no, no)

1. It can be implemented and stored as an attribute of the relation.
· Mechanism, such as triggers or stored procedures, should be used to ensure data consistency. That is the derived column should be consistent with the data that derives its value.
2. It may not be stored as a column directly in any relation.
· Mechanism, such as virtual columns, views or stored functions, may be used to provide standard access to the derived attributes.
ATT5. Data type matching should be handled effectively and consistently.
1. In later modeling phases, one may use SQL data types of the targeted DBMS in the class diagram.
2. If available, consider using user-defined data types in the targeted DBMS.
ATT6. If the multiplicity of an attribute is specified for the case of 0.
1. If 0 is allowed, add the NULL specifier in the column definition. (NULL is usually the default)
2. If 0 is not allowed, add the NOT NULL specifier in the column definition.
ATT7. The default value of an attribute may be directly implemented in SQL DDL.
Keys and Constraints
KC1. If a relation R implements a class C or an association (class) A, and C or A has candidate keys K's, set all K's as candidate keys in R.
KC2. If a relation R implements a class C or an association (class) A, and C or A has no candidate key, create a surrogate candidate key SK for R.
1. This is needed as every relation must have at least one candidate key.
2. SK is usually the primary key.
KC3. All candidate keys can be implemented by using the 'unique' and non-null constraint in SQL.
KC4. Select a candidate key as the primary key and set it accordingly in the relation.
KC5. For a stereotype:
1. Some may be directly implemented in SQL DDL, e.g. PK, CK, unique, etc.
2. Otherwise, it is necessary to consider where it is implemented.
Example:
Consider the class Member with the following attributes:
1. Member_Id: <<PK>>: single-valued: 123 (Bun)
2. Member_ScreenName <<unique>>: single-valued
3. Hobby*: multi-valued (hobbies: string[0..*]): eat, sleep, drink
4. Medal* <<ordered>>; zinc, aluminum, mercury
Member Table:
	Member_Id
	Scrren_Name
	Hobbies (no, no: not in 1NF)
	Medals

	123
	Bun
	eat, sleep, drink
	zinc, aluminum, mercury

	
	
	
	

[image: astah_4]
What may the relational schema look like?
1. Member(MemberId, MemberScreenName):
1. CK: [1] MemberId, [2] MemberScreenName
Member:
	Member_Id
	Scrren_Name

	123
	Bun

	222
	Sooraj

	333
	Preethi

2. Hobbies(HobbiesId, MemberId, Hobby):
1. CK: [1] HobbiesId, [2] {MemberId, Hobby}
2. FK: [1] MemberId references Member(MemberId)
3. A surrogate key, HobbiesId, is created as the primary key.
Hobby:
	Member_Id (FK)
	Hobby
	HobbiesId (optional: for simple PK)

	123
	Eat
	1

	123
	Sleep
	2

	123
	Drink
	3

	222
	Sleep
	4

	333
	Sleep
	5

3. Medals(MedalsId, MemberId, Medal):
1. CK: [1] MedalsId, [2] MemberId, Medal.
2. FK: [1] MemberId references Member(MemberId)
3. A surrogate key, MedalsId, is created as the primary key.
Medal:
	Member_Id (FK)
	Medal
	MedalId (optional: for simple PK)

	123
	Zinc
	1

	123
	Aluminium
	2

	123
	Mercury
	3

	222
	
	

All columns in the table above are not nullable.
Example:
A class Rectangle has three attributes:
· Length
· Width
· \area: derived.
What may the relational schema look like?
One solution:
Rectangle(RectangleId, Length, Width)
with a view Rect define as
select RectangleId, Length, Width, Length * Width as Area
from Rectangle;
Alternatively, using virtual column:
CREATE or replace TABLE rectangle (
 width DOUBLE,
 height DOUBLE,
 area DOUBLE AS (width * height) virtual
);
Associations
A1. (basic) For a many to one association between C1 (the class with the one multiplicity) and Cm, add a column C1_Id into the relation Rm (which implements Cm).
1. Assume that R1_Id is the primary key of the relation R1 (e.g. Member).
2. R1_Id is a foreign key of Rm (e.g project) referencing R1(R1_Id).
3. The name R1_Id may need to be renamed.
4. R1_Id is not null in Rm If and only if 0 is not allowed (i.e. 1..1) for C1.
5. Any single valued attribute of the association is mapped to a column in Rm.
6. If you have composite or multi-valued attributes of the relationship, you should consider promoting the association to an association class or a class in your UML class diagram.
M1 is the owner of project P1
Member (1..1) owns (0..*) projects.
Good:
Project:
	ProjectId
	Name
	…
	OwnerId (FK references Member(MemberId); singled-valued

	P1
	
	
	M1

Member: bad, no, no.
	MemberId
	FName
	
	OwnedProjectId (multi-values)

	M1
	Bun
	
	P1, P3, P9 (no, no)

	
	
	
	

A2. (basic) For a many to many association between classes CA and CB, create a new relation RAB(RA_Id, RB_Id).
1. (RA_Id, RB_Id) is a candidate key.
2. RA_Id references RA(RA_Id) as a foreign key.
3. RB_Id references RB(RB_Id) as a foreign key.
4. An additional surrogate key, such as RAB_Id, can be created.
ProjMember (0..*) relates to Roles (0..*): cannot just use attributes.
PM1 relates roles R1, R2, R3
PM2 has the roles R1 and R4.
[bookmark: _GoBack]New table:
	PM_Id (FK)
	RoleId (FK)
	

	PM1
	R1
	

	PM1
	R2
	

	PM1
	R3
	

	PM2
	R1
	

	PM2
	R4
	

A3. For a one to one association between classes CA and CB, there are several options:
1. Treat CA as C1 and CB as Cm and apply A1.
2. Treat CA as Cm and CB as C1 and apply A1.
3. Merge the two relations RA and RB into one. (In this case, you may want to refactor the class diagram.)
A4. For any n-ary association (n>2), a new relation is needed.
1. You should consider using binary associations instead.
Example:
Consider the classes Order and OrderItem which have a (1..1) to (0..*) association. The association has an attribute 'packed'.
What may the relational schema look like?
OrderItem(OrderItemId, ..., OrderId, packed):
· OrderId is a foreign key referencing Order(OrderId)
Example:
Consider the class User and Account, which has a one to one association.
What may the relational schema look like?
Example:
Consider the tertiary association between the classes Supplier, Part, and Warehouse with an association attribute quantity.
What may the relational schema look like?
Supply(SupplyId, SupplierId, PartId, WarehouseId, Quantity):
1. CK: [1] SupplyId, [2] SupplierId, PartId, WarehouseId
2. FK: [1] SupplierId references Supplier(SupplierId), [2] PartId references Part(PartId), [3] WarehouseId references Warehouse(WarehouseId).

image1.png
Member

<<PK>> Memberld nt{1]

<<unique>> MemberScreenhame :int(1]
Hobbies stringl0.]

Wdeals : string0.]

Rectangle

Length :float
Width : float
<<derived>> arsa - float

