10/5/2021
Introduction to Relational Calculus
by K. Yue
1. Introduction
· Non-procedural, declarative, and high level.
· Two kinds:
1. Domain Relational Calculus (DRC)
2. Tuple Relational Calculus (TRC)
· Queries specified by the set builder form: {s | cond(s) }
· cond(s) is known as a formula.
· Constructs:
. Variables:
1. TRC: tuples (bound to tuples): e.g. s, t, student, class, etc.
1. DRC: attributes (bound to domain value): e.g. a, b, c, stuId, firstName, etc.
1. The variables are sometime known as 'dummy variables.' They can assume any names.
. Constants: string, int, etc. E.g. 12, 'csci', 3.7.
. Comparison operators: <, <, =, etc.
. Boolean operators: and (conjunction, ∧ or just ,), or (disjunction ∨), not (¬), implies (⇒), etc.
. Membership functions: belongs to, ∈, not belongs to, ∉, etc.
. Quantifiers: there exists (existential, ∃), not exists (∄), for all (universal ∀).
· An atom can be thought of as a simple Boolean expression: x op y, where x and y are attributes or constants, and op is a comparison operation.
. Example: R.a>=2, sname='BBC', t ∉ T, etc.
· A formula is either an atom or formulas connected by Boolean operators or qualifiers.
. Example: ∃e(e ∈ R), (and) a=1 ∨ (or) b=2, ∃a,b,c((a,b,c) ∈ R) or simply (a,b,c) ∈ R
· A formula that is not an atom can be thought of a compound Boolean expression.
· A variable is bound if it has a finite number of values., such as appearing in qualifier expressions (without negation). A free variable is not bound.
· Relational Calculus expressions need to be safe: results should be a finite set of tuples.
· Care should be taken especially for the negation operation. E.g. {s |¬ (s ∈ Student) } is unsafe.
· For a given implementation of relational calculus:
. There may be restrictions of supported constructs.
. There may be certain canonical requirements: e.g. conjunction (and operator joined: e.g. a and b; (aVb) and (-aVc), etc.) of disjunction (joined by or). PROLOG.
· Relational Calculus and Relational Algebra:
13. All RA expressions can be expressed in RC.
13. RA and RC have the same expressive power.
13. Any query language that can express all RA queries is known to be relational complete.
Example:
{i | i ∈ I ∧ i % 2 =0}
{i | i ∈ I, i % 2 =0} -- set builder form.
{t | ∃r ∈R, r.firstname = t.firstname, r.lastname = t.lastname}
· t is a free variable.
· It will have two attributes: t.firstname and t.lastname.
Alternatively, we can use the set builder form in the LHS before |:
{(r.firstname, r.lastname) | r ∈ R}
R(A,B,C,D) / S(C,D)
{(a,b) | ∀(c,d) ∈ S((a,b,c,d) ∈ R))}
· In this class, with the query is complicated, you may use intermediate relations to construct a sequence of RC expressions to provide the result.
Exercises:
How do you use RC to implement RA operations?
2. TRC
· The variables in TORC are tuples.
· SQL is based on TRC.
Exercise:
Work on some of the query questions listed in the Supplies database example in TRC.
3. DRC
· The variables in DRC are attributes (domain values).
· May use anonymous variable: _ as a placeholder.
· Query By Example (QBE) is based on DRC.
Exercise:
Work on some of the query questions listed in the Supplies database example in DRC.
3. Show all information of suppliers with a status greater than 5.

	SNum
	SName
	SCity
	Status

	S1
	ABC
	Dallas
	10

	S2
	DEF
	Houston
	20

	S3
	Go go
	Houston
	12

SELECT s.*
FROM supplier AS s -- s ∈ supplier,
WHERE s.status > 5;

TRC: s: a tuple/row (SQL uses TRC)
{s | s ∈ supplier, s.status > 5}
DRC: (e.g. Access; Prolog, …)
(): tuple builder
{(snum, sname, scity, status) | (snum, sname, scity, status) ∈ supplier, status > 5}
{(snum, sname, scity, status) | (snum, sname, scity, status) ∈ supplier, status_1 > 5} incorrect
{(a,b,c,d) | (a,b,c,d) ∈ supplier and d > 5}

5. Show all information of parts with a color of Red or Blue.
TRC:
{ p | p ∈ part, (p.color = ‘Red’ V p.color = ‘Blue’)}
p ∈ part, (p.color = ‘Red’ V p.color = ‘Blue’)}: (p ∈ part) and (p.color = ‘Red’ V p.color = ‘Blue’)}: conjunction of two disjunctions.
DRC:
{ (pnum, pname, color, weight) | (pnum, pname, color, weight) ∈ part, (color = ‘Red’ V color = ‘Blue’)}
16. Show all information of parts supplied by supplier S2.
	P1

	P2

	P4

Part
	PNum
	PName
	Color
	Weight

	P1
	Drum
	Green
	10

	P2
	Hammer
	Green
	20

	P4
	Micropod
	Red
	4

Supply:
	SNum
	PNum

	S2
	P1

	S2
	P2

	S2
	P4

TRC:
[bookmark: _Hlk84335417]{ p | p ∈ part, s ∈ supplier, s.snum = ‘S2’, s.pnum = p.pnum)}
SELECT DISTINCT p.*
FROM part AS p INNER JOIN supply AS s ON (p.pnum = s.PNUM)
-– alias: p: row in part
WHERE s.SNUM = 'S2';

DRC:
{ { (pnum, pname, color, weight) | { (pnum, pname, color, weight) ∈ part, (snum, pnum, quantity) ∈ supply, snum = ‘S2’)}
{ { (pnum, pname, color, weight) | { (pnum, pname, color, weight) ∈ part, (snum, pnum, _) ∈ supply, snum = ‘S2’)}
_: placeholder, anon variable.
 { (pnum, pname, color, weight) | { (pnum, pname, color, weight) ∈ part, (‘S2’, pnum, _) ∈ supply)}

16b. Show pnum and pname of parts supplied by supplier S2.
TRC:
{ (p.pnum, p.pname) | p ∈ part, s ∈ supply, s.snum = ‘S2’, s.pnum = p.pnum)}
SELECT DISTINCT p.pnum, p.pname
FROM part AS p INNER JOIN supply AS s ON (p.pnum = s.PNUM)
WHERE s.SNUM = 'S2';

DRC:
{ { (pnum, pname) | { (pnum, pname, _, _) ∈ part, (snum, pnum, _) ∈ supply, snum = ‘S2’)}

F(x) = x2
F(yue) = yue2
Dummy variable
17. Show all information of parts supplied by supplier S2 or S3.
TRC:
{ p | p ∈ part, s ∈ supply, (s.snum = ‘S2’ V s.snum= ‘S3’), s.pnum = p.pnum)}
DRC:
{ { (pnum, pname, color, weight) | { (pnum, pname, color, weight) ∈ part, (snum, pnum, _) ∈ supply, (snum = ‘S2’ V snum=’S3’)}
19. Show all information of parts supplied by supplier S2 and S3.
	S1:
	S2
	P4
	6

	S2:
	S3
	P4
	1

TRC:
{ p | p ∈ part, s ∈ supply, s.snum = ‘S2’ , s.snum= ‘S3’, s.pnum = p.pnum)} = empty set.
X == 1 && x==2
Show all information of parts supplied by supplier S2 and S3.
{ p | p ∈ part, s1 ∈ supplier, s1.snum = ‘S2’ , s1.pnum = p.pnum, , s2 ∈ supplier, s2.snum = ‘S3’ , s2.pnum = p.pnum)}
SELECT DISTINCT p.pnum, p.pname
FROM part AS p INNER JOIN supply AS s1 ON (p.pnum = s1.PNUM)
	INNER JOIN supply AS s2 ON (p.pnum = s2.PNUM)
WHERE s1.SNUM = 'S2'
AND s2.SNUM = 'S3';

Show all information of parts supplied by supplier S2 and S3.
DRC:
{ { (pnum, pname, color, weight) | { (pnum, pname, color, weight) ∈ part, (‘S2’, pnum, _) ∈ supply, , (‘S3’, pnum, _) ∈ supply)}
19b. Show all information of parts supplied by supplier S2 but not S3.
{ p | p ∈ part, s ∈ supply, s.snum = ‘S2’, s.snum<>’S3’ (subsumed), s.pnum = p.pnum)}
The same answer as:
{ p | p ∈ part, s ∈ supply, s.snum = ‘S2’, s.pnum = p.pnum)}
Because s.snum = ‘S2’ => s.snum<>’S3’ (vs. x==1 => x <> 2)
	SNum
	PNum
	Quantity

	S2
	P1
	11

	S2
	P2
	1

	S2
	P4
	6

	S3
	P4
	1

	S3
	P5
	2

	S3
	P6
	12

	S3
	P7
	5

{ p | p ∈ part, s ∈ supply, s.snum = ‘S2’, ((s2 ∈ supply, s2.pnum = p.pnum) => s2.snum <> ‘S3’) s.pnum = p.pnum)}
(s2 ∈ supply, s2.pnum = p.pnum) => s2.snum <> ‘S3’ not a disjunction clause.
 p => q equivalent -p V q
-(p and q) equivalent to -p V -q
(s2 ∈ supply, s2.pnum = p.pnum) => s2.snum <> ‘S3’:
	-(s2 ∈ supply, s2.pnum = p.pnum) V 	s2.snum <> ‘S3’
	-s2 ∈ supply V -s2.pnum = p.pnum V	s2.snum <> ‘S3’
	s2 ∉ supply V s2.pnum <> p.pnum V	s2.snum <> ‘S3’
{ p | p ∈ part, s ∈ supply, s.snum = ‘S2’, (s2 ∉ supply V s2.pnum <> p.pnum V s2.snum <> ‘S3’), s.pnum = p.pnum)}
SQL:
SELECT DISTINCT p.pnum, p.pname
FROM part AS p INNER JOIN supply AS s1 ON (p.pnum = s1.PNUM)
WHERE s1.SNUM = 'S2'
AND NOT EXISTS
	(SELECT s2.*
	 FROM supply AS s2
	 WHERE s2.PNUM = p.pnum
	 AND s2.SNUM = 'S3');

DRC:
{ (pnum, pname, color, weight) | { (pnum, pname, color, weight) ∈ part, (‘S2’, pnum, _) ∈ supply, , (‘S3’, pnum, _) ∉ supply)}

It is possible for R(A,B,C,D,E) to have exactly three superkeys.
CK: AB => SK: AB, ABC, ABD, ABE, ABCD, ABCE, ABDE, ABCDE
CK: ABC => SK: ABC, ABCD, ABCE, ABCDE
CK: ABCD => SK: ABCD, ABCDE
CK: ABCDE => SK: ABCDE
CK: [1] ABCD, [2] ABCE => SK: ABCD, ABCE, ABCDE.

SQL:
17. Show all information of parts supplied by supplier S2 or S3. Ordered by descending weight

[bookmark: _GoBack]Output columns:
1. p.*
Source tables:
1. part AS p
2. supply as s
Join conditions:
1. p.pnum = s.snum
Problem Conditions: supplied by supplier S2 or S3.
1. S.snum = ‘S2’ or s.snum = ‘S3’
Viewing Orders:
1. ORDEY BY p.weight DESC

