CSCI 5333 DBMS

Spring 2020

Suggested Solution to Mid-Term Examination

(1) For example (data types not required): Team 1 and Team 2 may be modeled as associations instead of association classes. In this case, the attributes, team_1_score and team_2_score should be added to the class Game.

(2) For example:

Relation	P(<u>A</u> , B)	Relation	Q(QID, C)
[CK] [1] A		[CK] [1] QID	
[FK]		[FK]	
[NN] A		[NN] QID, C	
[Note]		[Note] QID is created as the surrogate primary	
		key.	
Relation	R(<u>RID</u> , D, A, V_QID, X_RID)	Relation	W(<u>WID</u> , RID, QID)
[CK] [1] RID		[CK] [1] WID, [2] RID, QID	
[FK] [1] A references P(A); [2] V_QID		[FK] [1] RID references R(RID); [2] QID	
references Q(QID); [3] X_RID references R(RID)		references Q(QID)	
[NN] RID, D, A		[NN] WID, RID, QID	
[Note] RID is created as the surrogate primary		[Note] WID is created as the surrogate primary	

key.		key.	
Relation	RE(<u>REID</u> , RID, E)	Relation	
[CK] [1] REID, [2] RID, E		[CK]	
[FK] [1[RID references R(RID)		[FK]	
[NN] REID, RID, E		[NN]	
[Note] REID is created as the surrogate		[Note]	
primary key.			

- (d) (3) (a) Τ (b) Τ (c) Τ F (e) F (h) (f) F (g) Т (i) Т (i) Т
- (4) Yes, AB and AE.
- [1] C and D are non-prime attributes. Thus, the CK can be made of only A, B and E. Potential choices: A, B, E, AB, AE, BE and ABE.
- [2] BE is not a SK. Thus, B, E and BE cannot be CK. Remaining potential choices: A, AB, AE and ABE.
- [3] There are two CK. Only AB and AE can be CK at the same time, and thus they are the two CKs.
- (5) For example,
- (a) π_{PNum, PName, Weight} (σ_{(SCity='Dallas' V SCity='Houston') Λ status<11} (SUPPLIER) |X| SUPPLY |X| (Part))

```
project [pnum, pname, weight]
(((project [snum] (select [scity='Houston'] (supplier)))
union
(project [snum] (select [scity='Dallas'] (supplier))))
join
(project [snum] (select [status<11] (supplier)))
join
supply
join
part);</pre>
```

(b) π_{SName} (SUPPLIER |X| (π_{SNum} (SUPPLIER) - π_{SNum} (SUPPLY |X| $\sigma_{Weight \le 10}$ (PART)))

```
project [sname]
(supplier
join
((project [snum] (supplier))
minus
(project [snum]
  (supply join (select [weight <= 10] (part))))));</pre>
```

(c) $\pi_{SName, Status}$ (SUPPLIER |X| (π_{SNum} (SUPPLY |X| $\sigma_{Color='Green'}$ (PART))) $\cap \pi_{SNum}$ (SUPPLY |X| $\sigma_{Weight>=10}$ (PART))))

```
project [sname, status]
(supplier
```

```
join
((project [snum] (supply join (select [color='Green'] (part))))
(project [snum] (supply join (select [weight >= 10] (part)))));
(6) (a)
\{(pnum, pname, weight) \mid (snum, scity, status) \in Supplier, (snum, pnum, ) \in Supply,
(pnum,pname, ,weight) ∈ Part, (scity='Dallas' V scity='Houston'), status<11}
(b)
{(sname) | (snum, _, _) ∈ Supplier, ((snum, pnum, _) ∉ supply V (pnum, _, _, weight) ∉ part V weight <=
10)}
(c)
{(sname, status) | (snum,sname, ,status) ∈ Supplier, (snum, pnum1, ) ∈ Supply, (pnum1, , 'Green', )
∈ Part, (snum, pnum2, _) ∈ Supply, (pnum2, _,_,weight) ∈ Part, weight>=10}
(7)
(a)
SELECT DISTINCT p.pnum, p.pname, p.weight
FROM Part AS p INNER JOIN Supply AS u ON (p.pnum = u.pnum)
    INNER JOIN Supplier AS s ON (u.snum = s.snum)
WHERE (s.SCity = 'Houston' OR s.SCity = 'Dallas')
AND s.status < 11;
(b)
SELECT DISTINCT s.sname
FROM supplier AS s
WHERE s.snum NOT IN
       (SELECT u.snum
        FROM supply AS u INNER JOIN part AS p ON (u.pnum = p.pnum)
        WHERE p.Weight >= 10);
(c) For example,
    SELECT DISTINCT s.sname, s.status
    from supplier AS s INNER JOIN supply AS u1 ON (s.snum = u1.snum)
        INNER JOIN part AS p1 ON (u1.pnum = p1.pnum)
        INNER JOIN supply AS u2 ON (s.snum = u2.snum)
        INNER JOIN part AS p2 ON (u2.pnum = p2.pnum)
    WHERE pl.color = 'Green'
    AND p2.weight >= 10;
```