CSCI 5333 DBMS

Spring 2020

Suggested Solution to Mid-Term Examination

(1) For example (data types not required): Team 1 and Team 2 may be modeled as associations instead of association classes. In this case, the attributes, team_1_score and team_2_score should be added to the class Game.

(2) For example:

Relation	$\mathrm{P}(\mathrm{A}, \mathrm{B})$	Relation	Q(QID, C)
[CK] [1] A		[CK] [1] QID	
[FK]		[FK]	
[NN] A		[NN] QID, C	
[Note]		[Note] QID is created as the surrogate primary key.	
Relation	R(RID, D, A, V_QID, X_RID)	Relation	W(WID, RID, QID)
[CK] [1] RID		[CK] [1] WID, [2] RID, QID	
[FK] [1] A references P(A); [2] V_QID		[FK] [1] RID references R(RID); [2] QID	
references Q(QID); [3] X_RID references R(RID)		references Q(QID)	
[NN] RID, D, A		[NN] WID, RID, QID	
[Note] RID is created as the surrogate primary		[Note] WID is created as the surrogate primary	

key.	key.	
Relation	RE(REID, RID, E)	Relation
$[$ CK] [1] REID, [2] RID, E	$[$ [KK	
[FK] [1] RID references R(RID)	$[F K]$	
[NN] REID, RID, E	$[$ NN]	
[Note] REID is created as the surrogate	[Note]	
primary key.		

(3)
(a) T
(b) T
(c) T
(d) F
(e) F
(f) F
(g) $\quad \mathrm{T}$
(h) F
(i) T
(j) T
(4) Yes, AB and AE.
[1] C and D are non-prime attributes. Thus, the CK can be made of only A, B and E. Potential choices: A, $B, E, A B, A E, B E$ and $A B E$.
[2] $B E$ is not a $S K$. Thus, B, E and $B E$ cannot be $C K$. Remaining potential choices: $A, A B, A E$ and $A B E$.
[3] There are two CK. Only AB and AE can be CK at the same time, and thus they are the two CKs.
(5) For example,
(a) $\quad \pi_{\text {PNum, }}$ PName, Weight $(\sigma$ (SCity='Dallas' V sCity='Houston') \wedge status<11 (SUPPLIER) $|X|$ SUPPLY $|X|$ (Part))

```
project [pnum, pname, weight]
(((project [snum] (select [scity='Houston'] (supplier)))
    union
(project [snum] (select [scity='Dallas'] (supplier))))
join
(project [snum] (select [status<11] (supplier)))
join
supply
join
part);
```

(b) $\quad \pi_{\text {sName }}\left(\right.$ SUPPLIER $|X|\left(\pi_{\text {sNum }}(S U P P L I E R)-\pi_{\text {sNum }}\left(\right.\right.$ SUPPLY $|X| \sigma_{\text {Weight }}=10$ (PART)))

```
project [sname]
(supplier
join
((project [snum] (supplier))
minus
(project [snum]
    (supply join (select [weight <= 10] (part))))));
```

(c) $\quad \pi_{\text {sName, Status }}\left(\right.$ SUPPLIER $|X|\left(\pi_{\text {sNum }}\left(S U P P L Y|X| \sigma_{\text {Color } z^{\prime} \text { Green' }}(\right.\right.$ PART $\left.)\right) \cap \pi_{\text {sNum }}\left(S U P P L Y|X| \sigma_{\text {Weight }}=10\right.$ (PART))))

```
project [sname, status]
(supplier
```

```
join
((project [snum] (supply join (select [color='Green'] (part))))
intersect
(project [snum] (supply join (select [weight >= 10] (part))))));
```

(6) (a)
$\{($ pnum, pname, weight) | (snum,_,scity,status) \in Supplier, (snum, pnum,_) \in Supply, (pnum,pname,_,weight) \in Part, (scity='Dallas' V scity='Houston'), status<11\}
(b)
$\{($ sname $) \mid($ snum, _, _) \in Supplier, ((snum, pnum,__) \notin supply V (pnum, „ _, weight) $\notin \operatorname{part} V$ weight $<=$ 10) \}
(c)
\{(sname, status) | (snum,sname,_,status) \in Supplier, (snum, pnum1, _) \in Supply, (pnum1, _, 'Green',_) \in Part, (snum, pnum2, _) \in Supply, (pnum2, _,_,weight) \in Part, weight>=10\}
(7)
(a)

```
SELECT DISTINCT p.pnum, p.pname, p.weight
FROM Part AS p INNER JOIN Supply AS u ON (p.pnum = u.pnum)
    INNER JOIN Supplier AS s ON (u.snum = s.snum)
WHERE (s.SCity = 'Houston' OR s.SCity = 'Dallas')
AND s.status < 11;
```

(b)

```
SELECT DISTINCT s.sname
FROM supplier AS s
WHERE s.snum NOT IN
        (SELECT u.snum
        FROM supply AS u INNER JOIN part AS p ON (u.pnum = p.pnum)
        WHERE p.Weight >= 10);
```

(c) For example,

```
SELECT DISTINCT s.sname, s.status
from supplier AS s INNER JOIN supply AS ul ON (s.snum = ul.snum)
    INNER JOIN part AS p1 ON (ul.pnum = p1.pnum)
    INNER JOIN supply AS u2 ON (s.snum = u2.snum)
    INNER JOIN part AS p2 ON (u2.pnum = p2.pnum)
WHERE p1.color = 'Green'
AND p2.weight >= 10;
```

