import pandas as pd import numpy as np # Create a simple Series from a list of values; default integer index is used data = [10, 20, 30, 40, 50] series_1 = pd.Series(data) print(f"series_1: Series from a list: {data}") print(series_1) print() # An empty series. series_2 = pd.Series() print("series_2: empty series: []") print(series_2) print() # A series with custom labels/indices. test_data = [90, 77, 90] test_index = ["test_1", "test_2", "test_3"] series_3 = pd.Series(test_data, index=test_index) print(f"series_3: explicitly labeled series.") print(f"element values: {test_data}") print(f"custom index: {test_index}") print(series_3) print() # A series with custom labels/indices and a 'not a number' value (np.nan) test_data = [90, 77, 90, np.nan] test_index = ["test_1", "test_2", "test_3", "test_4"] series_4 = pd.Series(test_data, index=test_index) print(f"series_4: explicitly labeled series.") print(f"element values: {test_data}") print(f"custom index: {test_index}") print(series_4) print() # Example methods of Series print(f"series_4.head(): {series_4.head()}") print() print(f"series_4.describe(): {series_4.describe()}") print() print(f"series_4.value_counts(): {series_4.value_counts()}") print() print(f"series_4.sort_values():\n{series_4.sort_values()}") print() print(f"series_4:\n{series_4}") print() print(f"series_4.dropna():\n{series_4.dropna()}") print() print(f"series_4:\n{series_4}")