CSCI 1470 CS 1 Annotation
2026_1_29
Visual Studio Code: free and powerful IDE; PyCharm: Python IDE

Introduction to Computation Thinking
by K. Yue
1. Discipline-based thinking
· Discipline-based thinking refers to the process and methods of understanding and applying knowledge within a specific field of study.
· A discipline-based thinking comes with:
1. Methods
2. Traits and Characteristics
3. Values
· The way of thinking in one discipline can be applicable outside the discipline as well as in real life.
Example: Philosophical thinking: one definition: "a method of inquiry that seeks to explore fundamental questions and concepts, relying on reason, analysis, and critical thinking to gain deeper insights into the nature of reality, knowledge, ethics, and the human experience."
1. Methods: critical thinking, conceptual analysis, reflection, rational argumentation, ...
2. Traits and Characteristics: reasoning, wonderment, curiosity, contemplation, ...
3. Values: truth, meaning, rational, ..,
Scientific methods: Richard Feymann, “Surely you’re joking, Mr. Feynman”: Feynmann’s method of learning.
2. Computational Thinking
2.1 Methods of Computation Thinking
· Computation thinking is "a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute: from wikipedia.
· Four core components:
1. Algorithms - developing a step-by-step solution.
2. Decomposition - breaking down a complex problem or system into smaller, more manageable parts.
3. Pattern recognition – looking for recurring structures in problems, data sets and solutions.
4. Abstraction – focusing on the important information only, ignoring irrelevant and lower level implementations details
2.2 Algorithms
· Develop and implement step by step instruction for problem solving.
Examples:
· Python program
· Cooking recipe
2.3 Decomposition
If decomposition is done well, there are many potential advantages. For examples:
1. Simplification for easier understanding.
2. Reduced complexity.
3. Better efficiency.
4. Component reuse.
5. Better and concurrent task assignments.
There are criteria for good decompositions: e.g., modularity, independence, ease of understanding, ...
Examples:
· functions
· classes
· modules
· college degree
· ...
2.4 Pattern Recognitions
· Identify recurring patterns and structures to better understand and specify problem and construct solutions.
· Human being relies on pattern recognitions a lot.
Examples:
· Dark cloud -> likely to rain -> bring an umbrella.
· Very dark cloud -> very like to have thunderstorm -> stay home.
2.5 Abstraction
· Focus on essential and high level features. Hide complex lower level implementation and irrelevant details.
· Difference between building X and using X.
Examples:
· In driving, you need to control the engine (by stepping of the gas pedal). A good driver does not need to know how the engine work,
· You can call the function input() in Python withoug knowing how the input() function is actually implemented.

Python's Basics
CSCI 1470
by K. Yue
1. Python's Interpreter
· An interpreter is a program that executes code from a high-level programming language one statement at a time.
· A Python interpreter is a program that executes Python code one statement at a time.
[image:]
· In windows, the Python interpreter is usually 'python.exe' in the installed Python directory.

[image:]
[image:]
The first Python.exe in the PATH environment.
[image:]

Example:
[image:]
· In contrast, many high-level programming languages do not have interpreters. Instead, they use compilers. (e.g. CS II class: Java) Execution of a program involves two steps. Program executions require two steps:
1. Compilation: compile the program to machine code or other low level code.
2. Execution: execute the machine or low-level code.
Example:
	In Java, to run a program, Hello.java:
[1] "javac Hello.java": compile Hello.java into Hello.class, a Java bytecode program. Java bytecode has .class as its file extension. It is a platform independent intermediate level programming language.
[2] "java Hello": invoke the Java Virtual Machine (JVM) to run the Java bytecode program Hello.class. Note that the instruction is not "java Hello.class" as the file extension of .class is assumed.

1.1 Python Interpreter
· The Python interpreter is invoked by running "<<python_installation_path>>\python.exe" (e.g., c:\python\python313\python.exe)
· When invoking by itself, the Python interactive interpreter is started, executing one Python statement at a time.
[image:]
[image:]
· The interactive Python interpreter is good for exploration and learning. However, it is limited by one user input Python statement at a time.
· To perform serious work, it is necessary to run Python programs that contain many Python statements.
· One can use it to execute a program, e.g. "Python hello.py"
[image:]
1.1 Python IDLE
· The Python IDLE is more than the Python interactive interpreter. It is a simple IDE with an editor and can execute a Python program.
[image:]
2. Python Programs
2.1 Python Literals and Variables
· Literals in Python are fixed values written directly in the source code that represent constant data.
E.g.,
constants.py
PI = 3.141592653589793 (physical constant)
SPEED_OF_LIGHT = 299792458 # meters per second (physical constant)
MAX_CONNECTIONS = 1000 (setting for the program, not to be changed
Constant: upper characters, meaningful, connected by _.
UNIVERSITY_NAME = 'University of Houston-Clear Lake'
Use case: not suppose to change the university.
· There are many types of literals: number literals, string literals, Boolean iterals, etc.
· Identifiers are names used to identify variables, functions, classes (e.g. , ‘str’ <class 'str'>)modules (e.g. turtle), or other objects in Python code.
IN “x = s.upper()”: identifiers: x, s, upper
· A Python variable has a symbolic name (identifier) that refers to objects or values stored in the computer's memory.
x = 15;
1. Python gets a location to store 15.
2. Store the address of x in the symbol table.

[image:]

[image:]
[image:]
2.2 Python Statements
· A Python statement is an instruction that the Python interpreter can execute.
· A statement is a basic execution unit in Python.
· There are many types of statements in Python.
[image:]
use cases of id() in python:

The primary use of Python's id() function is for debugging and understanding memory management by returning a unique integer identifier for an object, which corresponds to its memory address in the CPython implementation.
· A Python statement usually terminates at the end of a physical line, denoted by a newline character: ('\n').
\: escape characters.
1. Regular meaning: ‘n’: means ‘n’
2. Special meaning in context: ‘\n’ (one character with special meaning): newline.
[image:]
· The character ; is a terminator of Python statement. It is not required and is seldomly used.
· The character \ can be used to extend a Python statement beyond the current physical line.
· Python can also detect that some Python statements are not terminating and extend them to the next physical line.
[image:]
Try out statement_1.py
Python statements

A Python statement is terminated by the end of the physical line,
represented by the end of line character: \n.

print('hello')

print('hello again');

Not recommended Python style.
print('hello '); print('world');

the second argument (end = ' ') indicates that the end string
for the print statement is ' ', and not the default '\n'
print('hello ', end = ' '); print('world');
[image:]

[image:]
\n is the end of line character. \ is used here for 'escaping' a character into special characters.
print('first line\nsecond line\nthird line');

Because of the , character, Python knows that this
not the end of the statement and extends it to the next line.
print('hello',
 'world')

The character \ extends the statement to the next line.
There should not be any character after \.
print('hello' \
 , 'world')

 2.3 Expressions, Functions, Operators and Methods
· In Python, an expression is a piece of code that the Python interpreter evaluates to produce a value.
· The evaluation of an expression always returns a value.
· Expressions can be constructed by using:
1. literals: constants
2. variables: identifiers refering an object or a value.
3. functions: standalone functions similar to mathemtical functions. Have arguments and return a value. E.g., max()
4. operators: special symbols representing operations. E.g., a + b.
5. methods: functions belonging to an object using the object method invocation syntax: object.method(). E.g., if s is a string, we can call s.upper()
Examples:
Try out expression_ex1.py
a = 1
b = 2
c = 'hello'
print(max(a, b, 3))
print(round((a+100)/(b+5)))
max(a, b, 12, b*7, 6)
a + b * 4
a < b
a > b
a / b
d = (a + 4) ** b
e = c + ' world'
print(a, b, c, d, e)
print(e.upper())

image6.jpeg
Python 3.13.6 (tags/v3.13.6:4e66535, Aug 6 2025, 14:36:00) [MSC v.1944 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> Qa’nt ("hello")
hello Prompt of the interactive interpreter.
>>>

image7.png
C:\CS1_S26\website\demo>python
Python 3.13.6 (tags/v3.13.6:4e66535, Aug 6 2025, 1u4:36:00) [MSC v.19ud 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
>>> y = 1

>>> y

1

>>>

KeyboardInterrupt

>>> quit()

C:\CS1_S26\website\demo>python square.py

image8.jpeg
C:\CS1_F25\privateNotes\examples>python square.py

N

W Python Turtle Graphics

Run square.py

Command line prompt

image9.jpeg
~ > This PC > OS(C) > Python > Python313 > Lib » idlelib ~—

3

~

D Name Date modified
[= nyperparser.py B/0/202> 414 FIVI
=] idle.bat
[& idle.py
[& idle.pyw 8/6/2025 4:14 PM
[# iomenu.py 8/6/2025 4:14 PM

B iacoce b 8/6/2025 4:14 PM

Type
rymnon riie

File

Python File (no co...
Python File
Pvthon File

Size

15 KB
1KB
1KB
1KB
17 KB
10 KB

image10.png
R e e

>>>x = 15 ~— -
>>>1id (x) In CPython, (1) store 15 in the memory location of 14071912729424, J

a— | [2] store x: 14071912729424 in the symbol.
140719712728424 L

>>>
Ln; 36 Col

image11.png
b A bl -tV iAA Al

>>>x = 15 ~—
>>>1d (x)
140719712728424
>>>x = 'hello, this is a long€
>>>1d (x)
3076973670000 €

>>>|
ln- A2 CAl-

image12.jpeg
Python code: x=15

Symbol address I

0x214d0ac0310 15
X 0x214d0ac0310 Refers to

Symbol Table maintained by Python Primary Memory

Variables refers to memory locations (containers) that store values

Not exactly =—————

x 15

Variables are not exactly containers of values

image13.png
>>>

>>>

>>>

>>>

>>>
>>>

>>>

>>>

>>>
>>>

>>>

>>>

13

12

id(x)
140719712728328
x =x + 1

X

13

id(x)
140719712728360

image14.png
>>>'hello n n n'

'hello n n n'

>>>"'hello \n \n \n bye' ~®—m—
'hello \n \n \n bye'

>>>print ('hello \n \n \n bye")
hello

by

>>>|

image15.png
>>>

>>>

>>>

bye

'hello from
SyntaxError
'hello from
"hello from

Bunf's dogf!
: unterminated

Bun \~&—dag

string literal (detected at line 1)

Bun's dog"

image16.png
feod|
—

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window B cawindows\system3z' % Ty
e E?n ¥ D ih Bg| % C =1 - EEELAHGE ® e Python 3.13.6 (tags/v3.13.6:4e66535, Aug 6 2
~ I statement_1.py 2 025, 14:36:00) [MSC v.1944 64 bit (AMD64)] on
7 win32
- print(): two arguements: Tyﬁef"help", ?c;pyrlght", "credits" or "licen
i—‘ [1] 'hello': positional argument; position 1. = or more information.
0 [/]1 end =" ': names argument, name: end. >>>y =1
-/ >>> y
10 4 N 1
i = : >>>
11 I hello ') M ('world) ’ KeyboardInterrupt
- >>> quit()
13 # tlhhe second drgument (ehd = ' ') 1indica (e LR AGEILE G ML RELTE WY
14 i ¥OT ChEe PprIft sStatemenp s = ', dnd nodt C:\CS1_S26\website\demo>python square.py
15 'hello ", lend = " ")} 'world')
f (!)f ()i C:\CS1_S26\website\demo>python statement_1.py
7 - : L, N hello
17 = \n 1is ’.che end o.f 1ihe tharacter. N\J3S Uit again
character i1nto d4pecial /characters. heuo
13 end = change the default end string \n' to ' ' e\nthird 11 ¥ hello world
19 first line
L second line
20 i i r, Python knoWR rtemREns
21 # not the end of the statement and extends [Jiipmey

(‘ h'%ll(f_ﬁ: ! ,
T~ A+ 1 A1\

C:\CS1_S26\website\demo>

image17.png
_ _ . . hello world
f};ﬂ% second argument (end = ' ') 1ndilca Sty

b

s

= ni Y }LH E r l n T S # JT ement 1S ’ alna notg C: \CSl_526\website\demo>python statement_1. p

rint('hello ' nd = ' xXxoxoxoxo \n\n');
print('h , end nant) hello

hello again
hello

H
¥

\n 1s the end of line character. \ 1s

world
aiTgijfﬁulffﬁ%I' into special characters. hello xoxoxoxo

print('first line\nsecond line\nthird 1linec e

image1.png
A IDLE Shell 3.13.6
File Edit Shell Debug Options

Window Help

AMD64)] on win32

Python 3.13.6 (tags/v3.13.6:4e66535, Aug 6 2025, 14:36:00) [MSC v.1944 64 bit

Enter "help" below or click "Help" above for more information.

>>>1 = 793847983749874395

>>>print (i)

>>>1

793847983749874395

793847983749874395

>>>4# i: Python expression is a Python statement

>>>1d (1)
3076972715376

>>>|

(a

image2.png
" Python313

« > 1 C

@ New ~ do 0

> T Program Files
> od Program Files (x86)
> ProgramData

7 ProgramFilesFolder
v " IPython

> T Python38-32

X

()

v Python313

T DLLs
> T Doc
> Tlinclude
> ToLib
" libs
> T Scripts

> T share

&

+
ThisPC > OS(C) > Python > Python313 > Search Python313
2 N sort v = View ~ cee
(J Name B Date modified Type
T DLLs 8/12/2025 3:29 PM File folder
" Doc 8/12/2025 3:28 PM File folder
" include 8/12/2025 3:28 PM File folder
T Lib 8/12/2025 3:29 PM File folder
" libs 8/12/2025 3:29 PM File folder
" Scripts 1/23/2026 12:07 PM FiloAGlder
7 share 8/31/2025 5:43 P File folder
[~ R% 8/12/2825 3:29 PM
LICENSE.txt 8/6/2025 4:16 PM
NEWS.txt 8/6/2025 424
E python.exe 8/6/2025 4:15 PM Application 103 KB
E python3.13.exe 8/6/2025 4:15 PM Application 103 KB
python3.dll 8/6/2025 4:15 PM Application extens... 71 KB
python313.dll 8/6/2025 4:15 PM Application extens... 5,981 KB
Fal nvthonw exe /6/27025 415 PM Anblication 10?2 KR

image3.png
01/29/2026 10:06 AM <DIR>
01/27/2026 03:41 PM <DIR>

01/13/2026 11:54 AM 1,098,088 2026_1_13.docx
01/15/2026 12:00 PM 6,247,245 2026_1_15.docx
01/20/2026 11:51 AM 7,566,127 2026_1_20.docx

01/20/2026 10:19 AM TR IR IRy Python Turtle Graphics

01/22/2026 Theist hon.exe in th P LA
01/22/2026 [HARRNSAREE 6_1_22.py
01/22/2026 5_1_22.py.tx
01/22/2026 6_1_22_idle
01/27/2026 6_1_27.docx
01/29/2026 1U.U0 Al ZD,92D 4046_1_29.dOCX
01/22/2026 11:07 AM 1,059 f25h2a.py
01/20/2026 10:25 AM 1,758 f25h3.py
01/15/2026 10:U42 AM 22 helloworld_1.p
01/20/2026 10:14 AM 107 hello_2.py
01/27/2026 10:U8 AM 703 square.py
01/27/2026 11:49 AM <RIR> _hotes

15 File(s) 28,786,979 bytes

3 Dir(s) 30%,065,219,58U bytes free
C:\CS1_S26\website\demo>python square.py version 3.13

. /
C:\CS1_S26\website\demo>python3.13 square.py

version 3.8
C:\CS1_S26\website\demo>python3.8 square.py &=

image4.png
Environment Variables —ag—

e |Insert Draw Design Layout L1 Comments
[Verdana v][ﬂ v’ User variables for yue Edit environment variable X
B T 1 L w2 lA Variable Value
System Properties ChocolateylastPathUpdate ~ 133107665134696388 c:\Python\Python313\Scripts . New
GOPATH C:\Users\yue\go c:\Python\Python313 &
Computer Name "\Hardware Advanced OneDrive C:\Users\yue\OneDAve - Univel | C:\Python310\Scripts\ X
N OneDriveCommercial C:\Users\yue\On/Drive - Unive| | C:\Python310\ Edit
You must be loggeY on as an Administra Path C:\Program Fi)£s\MySQL\MySQ | C:\Program Files\Common Files\Oracle\Java\javapath
Performance [PyCharm C:\Program/riles\JetBra’) 3 “Java\javapath Browse...
Visual effects, processor scheduling, me TEMP C:\Users\fue\AppData\ ’ Python Turtle Graphics - o
T™MP C:\Usefs\yue\AppData\ Delete
hell\v1.0\
User Profiles |
Desktop settings related to your sign-in Move Up
System variables
Move Down
| Variable Value
Startup and Recovery { 0Os / Windows_NT
System startup, system failure, and debl Path c\Python\Python31 3\S| Edit text
PATHEXT .COM;.EXE;.BAT;.CMD;.V
PROCESSOR_ARCHITECTURE AMD64
PROCESSOR_IDENTIFIER Intel64 Family 6 Model
PROCESSOR _LEVEL 6
PROCESSOR_REVISION a600
PSModulePath %ProgramFiles%\Wind¢
Ok l y

2 New:

OK Cancel

image5.jpeg
Clipboard

Organize

New
v 4 1 > ThisPC > OS(C) > Python > Python313 -
A O Name Size

v | Python

> | Python38-32
v Python313

>
>
>

>
>
>

> | Python310

 DLLs
7 Doc
 include
7 Lib
 libs

' Scripts
" share
Tt

7 DLLs 8/12/2025 3:29 PM File folder
" Doc 8/12/2025 3:28 PM
" include 8/12/2025 3:28 PM
7 Lib
 libs i Fil
" Scripts File folder
" share 72025 5:43 PM File folder

<l 8/12/2025 3:29 PM File folder
— LICENSE.txt 8/6/2025 4:16 PM Text Document 34 KB
— NEWS.txt 8/6/2025 4:24 PM Text Document 1,965 KB
¥ python.exe 8/6/2025 4:15 PM Application 103 KB
P python3.13.exe 8/6/2025 4:15 PM Application 103 KB
1/ python3.dil 8/6/2025 4:15 PM
1/ python313.dll 8/6/2025 4:15 PM

[@ pythonw.exe
veruntime140.dIl

" veruntime140_1.dIl 8/6/2025 4:16 PM

