CSCI 1470 CS 1 Annotation
2026_1_27

Simple Python Development:
1. Use IDLE for testing/learning/experiment
2. Use Notepad++ and command line prompt (in project directory) for development.
3. Learn from example: run and annotate statement by statement in IDLE.
CSCI 1470.3 Fall 2025 Homework #2
Partial:
[1] Open Python IDLE. Execute the following statements one by one: s = "This is a very good day." print(s) print(s.upper()) print (s.lower()) print (len(s)) print(s.len()) print(upper(s)) Save the shell session in a log file named h2q1.log (which is a .txt file). Upload h2q1.log to Canvas. Study the output of these statements.

Solution:
h2.py
def main():
 input_string = input("Please enter a string -> ")
 print(f"length of the string: {len(input_string)}")
 print(f"in upper case: {input_string.upper()}")
 print(f"in lower case: {input_string.lower()}")

if __name__ == "__main__":
 main()

IDLE: Alt-P goes to the previous command.

[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

Notepad++: set to use spaces instead of tab.
[image:]
[image:]

Python IDLE
by K. Yue
1. Python IDLE
· Python IDLE is bundled in the Python distribution. There is no need for separate installation.
· IDLE can be regarded as a very simple Integrated Development Environment (IDE). (E.g., Pycharm: sophisticated IDE.) It is used in this class.
[image:]
· A short IDLE tutorial: https://www.youtube.com/watch?v=WIlQukiXs-E. (a little dated)
· https://realpython.com/python-idle/ is a very good tutorial on IDLE. However, it contains many topics not needed in this class.
2. Running IDLE shell as interpreter
· When you start IDLE, a shell window appears.
· IDLE shell is an interactive interpreter with REPL (Read-Evaluate/Execute-Print loop)
· Read a Python statement, single-lined or multiple-lined.
· Evaluate or execute the statement.
· Print the result of execution of the statement.
· A shell contains the collection of Python code the user entered interactively.
[image:]
2.1 Logging a shell session
· Logging is a crucial practice and habit in software development.
· Logging tracks program behavior and problems, enables debugging, supports performance analysis, supports auditing, monitors security and informs users, administrators, and developers.
· IDLE shell session can be logged by saving it in a file.
Suggestions/principles:
1. As specific as possible.
2. Separation of concerns.
[image:]
Shell Menu
[image:]
· Two buttons you may use:
11. Restart shell: start a new shell session.
11. Interrupt Execution: stop the execution (in case you get into an infinite loop)
[image:]
[image:]
3. Python program file editing and execution
· Shell includes a text editor.
· One can open an existing Python program file, or create anew Python program file.
[image:]
[image:]
· The file editor has many features.
[image:]
[image:]
· Some features you may use:
· Use the options menu to show line number.
· Set and clear breakpoints for debugging.
· Run the program by using Run->Run Module.
[image:]
[image:]
4. Debugging in IDLE
· A good tutorial in IDLE: https://www.cs.uky.edu/~keen/help/debug-tutorial/debug.html. Contain more than needed in the class.
· To debug a Python program:
17. Open the Python program using IDLE Shell: File -> Open.
17. Turn on the Shell debugger: Go->Debugger
17. Run the program in the editor using Run->Run Module.
17. Use the debugger window.
[image:]
[image:]
· Some basics:
· Use the go button in the debugger window to execute.
· Set and clear breakpoint in the editor.
· Examine the locals window in the debugger.
When the debugger window is started, in the example below, the locals window shows values of local variables.
[image:]
An example of using breakpoints:
[image:]
· Useful debugger options:
· step: one step at a time, including lower level function calls.
· over: one step at a time, not including lower level function calls. Probably more useful than 'step'.
· go: executes full the program.

Introduction to Turtle Graphics in Python
by K. Yue
1. Turtle Graphics Package
· The Python turtle module (files that contain Python code that you can use) is a built-in library (use them without installation) that provides a way to create graphics and drawings.
· In turtle graphics, there are two major concepts:
1. A window/screen/digit canvas for the turtle to move and draw.
2. A turtle with a pen that can move and draw (if the pen is down).
Turtle:
1. The turtle is:
1. in a co-ordinate location (x,y), initially (0,0)
2. facing a direction (initially right)
3. holding a pen which can be up and down (initially down). If the pen is down, the turtle draws while moving.
2. There are functions to control the turtle. Two popular ones are:
1. forward(distance): move the turtle forward by a distance. If the pen is down, the turtle also draws.
2. right(degree): turn its face to right with a degree.
Example:
[image:]
Consider square.py.txt (remove .txt when download):
import turtle

Create a screen object in turtle
screen = turtle.Screen()

Set screen dimensions
screen.setup(width=300, height=300)

Set background color
screen.bgcolor("lightyellow")

Create a turtle object
pen = turtle.Turtle()
pen.shape("turtle") # Change the turtle's shape
pen.color("green") # Set the turtle's color
pen.pensize(3) # Set the pen's size

pen.forward(100) # Move forward by 100 units
pen.right(90)
pen.forward(100) # Move forward by 100 units
pen.right(90)
pen.forward(100) # Move forward by 100 units
pen.right(90)
pen.forward(100) # Move forward by 100 units

screen.exitonclick()

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
· Download and run square2.py.txt. This is a version of square.py.txt that you can use as the basis of your HW assignment.
· Also, try to run it in IDLE by copying and pasting one statement at a time.
Explanations:
· "import turtle": import the built-in turtle module. This allows the program to use the turtle object.
· "pen = turtle.Turtle()" creates a turtle object and refers to it as "pen"
· "pen.forward(100)" moves the pen. Since the pen is down, the turtle also draws.
· "pen.right(90)" turns the turtle right 90 degrees.
· screen.exitonclick(): pause until the screen is clicked on to exit.

Introduction to Computation Thinking
by K. Yue
1. Discipline-based thinking
· Discipline-based thinking refers to the process and methods of understanding and applying knowledge within a specific field of study.
· A discipline-based thinking comes with:
1. Methods
2. Traits and Characteristics
3. Values
· The way of thinking in one discipline can be applicable outside the discipline as well as in real life.
Example: Philosophical thinking: one definition: "a method of inquiry that seeks to explore fundamental questions and concepts, relying on reason, analysis, and critical thinking to gain deeper insights into the nature of reality, knowledge, ethics, and the human experience."
1. Methods: critical thinking, conceptual analysis, reflection, rational argumentation, ...
2. Traits and Characteristics: reasoning, wonderment, curiosity, contemplation, ...
3. Values: truth, meaning, rational, ..,
Scientific methods: Richard Feymann, “Surely you’re joking, Mr. Feynman”: Feynmann’s method of learning.
2. Computational Thinking
2.1 Methods of Computation Thinking
· Computation thinking is "a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute: from wikipedia.
· Four core components:
1. Algorithms - developing a step-by-step solution.
2. Decomposition - breaking down a complex problem or system into smaller, more manageable parts.
3. Pattern recognition – looking for recurring structures in problems, data sets and solutions.
4. Abstraction – focusing on the important information only, ignoring irrelevant and lower level implementations details
2.2 Algorithms
· Develop and implement step by step instruction for problem solving.
Examples:
· Python program
· Cooking recipe
2.3 Decomposition
If decomposition is done well, there are many potential advantages. For examples:
1. Simplification for easier understanding.
2. Reduced complexity.
3. Better efficiency.
4. Component reuse.
5. Better and concurrent task assignments.
There are criteria for good decompositions: e.g., modularity, independence, ease of understanding, ...
Examples:
· functions
· classes
· modules
· college degree
· ...
2.4 Pattern Recognitions
· Identify recurring patterns and structures to better understand and specify problem and construct solutions.
· Human being relies on pattern recognitions a lot.
Examples:
· Dark cloud -> likely to rain -> bring an umbrella.
· Very dark cloud -> very like to have thunderstorm -> stay home.
2.5 Abstraction
· Focus on essential and high level features. Hide complex lower level implementation and irrelevant details.
· Difference between building X and using X.
Examples:
· In driving, you need to control the engine (by stepping of the gas pedal). A good driver does not need to know how the engine work,
· You can call the function input() in Python withoug knowing how the input() function is actually implemented.

image6.png
>>>
>>>

>>>

>>>

>>>

S
S

v
S
v

S
v

AN == A L LA

=" some banana

some banana

-upper ()
SOME BANANA

calling s.upper() returns the upper
case value of s. It does not change s.

-
some banana

.

image7.png
o)/
-
Fi

le Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 2

JHER S8 4 Ml eih g % - =1 - EEEDE @ !
afZShZa.py P ‘.2026_1_22.py ‘ =] c\Windows\System32\cmd.e X + v
21 C:\CS1_S26\website\demo>python f25h2a.py
29 File "C:\CS1_S26\website\demo\f25h2a.py", line 4
''' (comment by triple quote string)
IndentationError: expected an indented block after
23 function definition on line 2
24 ,
C:\CS1_S26\website\demo>python f25h2a.py
25 File "C:\CS1_S26\website\demo\f25h2a.py", line 4
''' (comment by triple quote string)
26 [Atab- J IndentationError: expected an indented block after
function definition on line 2
277

28 (" length of the s tring | (inpu C:\CS1_S26\website\demo>python f25h2a.py
[B Please enter a string -> hello world, 22 minutes to

29 K.
30 \ af the string: 33

~ sse: HELLO WORLD, 22 MINUTES TO BREAK.
31 g CRLE Efour Spaces J N hello world, 22 minutes to break.
32 (£"1n upper case: {ilnpot—string. \
B (f"1n lower case: {i1nput string.

34
35 | # main () function ends here.[RN

TabError: inconsistent use of tabs and spaces in in

30 dentation

2277 - =~ N AT A —— VT " A 9 A U~ DT 1

image8.png
Lﬂ/ C:\CS1_S26\website\demo\f25h2a.py - Notepad++

File Edit

cHEHE S8 4 Dk D c/th i % <[5

Search View Encoding Language Settings Tools Macro Run Plugins Window ?

S - EEERE G |- D

22

23
24
25

26
277
28
29
30

EfZShZa.py > B3 = 2026_1_22.py
21

and }

retul
5....!!!@
f———%prin{
5....!!!@
MCRTE

31
32
33
34
35

36
R

~ printi

~ f-string in Python.
NCRIT

8S—8 t] Preferences

General

Toolbar

Tab Bar

Editing 1

Editing 2

Dark Mode
Margins/Border/Edge
New Document
Default Directory
Recent Files History
File Association
Language
Highlighting

Print

Searching

Backup
Auto-Completion

Indent Settings Auto-indent
Perl O None
PHP)

O Basic

PostScript
o Advanced

PowerShell
Properties file I
PureBasic

Python

R

RFERNI
(] Use default value

Indent size: 4 /—

Indent using:

O Tab character

/ o Space character(s)

C] Backspace key unindents instead of removing single
space

Close

L. . = Multi-Instance & Date
pr 1 n1 Delimiter
Performance
Cloud & Link
1 Search Engine
main msc
11 £ Nname. —

Jt will evaluate any expression enclosed 1

]

image9.png
W C:\CS1_S26\website\demo\f25h2a.py - Notepad++

File Edit Search View

E-_] [[@ =] QE“;[
EfZShZa.py # £ /= 202

CRLE

21
272

23
24
25

26
27
28
29 |
30
31 |-
32
33 -
34
35 | #

36 G

R
Python file

QO erF

T devely

Fneoadinna

l annnane Settinnac

Always on Top
Toggle Full Screen Mode
Post-It

Distraction Free Mode
View Current File in

Show Symbol

Zoom

Move/Clone Current Document
Tab

Word wrap

Focus on Another View

Hide Lines

Fold All

Unfold All

Fold Current Level
Unfold Current Level
Fold Level

Unfold Level

Summary...

Project Panels
Folder as Workspace
Document Map
Document List

Function List

Text Direction RTL
Text Direction LTR

Monitorina (tail -f)

Tanl<

Macra Run Ph |qin5 Window ?
SIEO)
F11
F12

F8
Alt+H

Alt+0
Alt+Shift+0
Ctrl+Alt+F
Ctrl+Alt+Shift+F

Ctrl+Alt+R
Ctrl+Alt+L

t will evaluate any expressic

Show Space and Tab

Show End of Line

Show Non-Printing Characters

Show Control Characters & Unicode EOL
Show All Characters

C K K K X

o 30 and 1ir

<

Show Indent Guide
Show Wrap Symbol

string: {len(input string)}'

: {input string.upper()}") el
: {input string.lower()}") el

here.
2 RIT.E
length: 1,059 lines: 39 Ln:24 Col: 1 Pos: 691

L C . a @ P - @

image10.jpeg
(]
" oo wm B RN

2]

Project
Publisher
Python 3.8

Python 3.10

Python 3.13
New

IDLE (Python 3.13 64-bit)

Python 3.13 (64-bit)
New

Python 3.13 Manuals (64-bit)

Python 3.13 Module Docs (64-bit)
New

image11.jpeg
 IDLE Shell 3.13.6
File Edit Shell Debug Options Window Help

Python 3.13.6 (tags/v3.13.6:4e66535, Aug 6 2025, 14:36:00) [MSC
AMD64)] on win32

Enter "help" below or click "Help" above for more information.
>>>print ('hello, world')

>>>|

image12.jpeg
A IDLE Shell 3.13.6
File Edit Shell Debug Options Window Help

A Save As
« vl

Organize - New folder

= This PC
"3 3D Objects
“m Desktop
|2 Documents
"3 Downloads
b Music
‘= Pictures
"® Videos
5705 (C)

« privateNotes > tools > idle

Name

v U Searchidle

No items match your search.

File name: ‘ shell_1.txt
Save as type: Text files (*.txt)

Date modified

~

A Hide Folder:

Save ‘ ‘

Cancel

0) [MSC v.194

ation.

image13.jpeg
A IDLE Shell 3.13.6
File Edit Shell Debug Options Window Help

P View Last Restart F6 /v3.13.6:4e66535, |
Al Restart Shell Ctrl+F6
| &l A " n
E. Previous History Alt+P or—sLick "Help ab
>>> Next History Alt+N

Interrupt Execution Ctrl+C€—

image14.png
>>>x
10
>>>y
'Bun'
>>>print (f"in upper case: {input string.upper()}")
in upper case: HELLO WORLD, THIS IS THURSDAY.
>>>"hello, world'.upper ()
'HELLO, WORLD'
>>>'hello, world'.lower /()
'hello, world'
>>>g = " some banana
>>>'s
‘ ! some banana !
>>>s.upper ()

! SOME. BANANA !

>>>'s
! some banana !

>>>s.strip()

'some banana'

S>>

! some banana !

>>>print (

s)

some banana

>>>s
! some banana !

>>>

Ln: 52 Col: 0

image15.png
& IVYLRL I J.12.U 7 L/ 1_JLU/WEUSILE/UTTHU/ VLU 1_cc IUIT_1VYLAL\D.12.V)

File

Help

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>
>>>

>>>

Edit Shell Debug Options Window
S

! some Daxana !
s .upper ()

! SOME BANANA
S

! some banana
s.strip()

'some banana'

S

! some banana

print (

S)
some banana

! some banana

X
Traceback (most recent
File "<pyshell#27>",
X
NameError:
S
Traceback (most recent
File "<pyshell#28>",
S
NameError:
X 99
X

99
|

name 'x' 1is

name 's' is

RESTART:

call last):
line 1, in <module>

not defined

call last):
line 1, in <module>

not defined

Shell

Ln: 67 Col:

image16.jpeg
4 *IDLE Shell 3.13.6 - -

: File Edit Shell Debug Options Windc

Ctrl+O
Alt+M
>
\t+C
Path Browser
1 N
In IDLE shell, one can
6 create a new Python
| program file, or open an
4 | existing file.
y
CATUTULD U

r R " 4

image17.png
'

A f25h2a.py - C\CS1_S26\website\demo\f25h2a.py (3.13.6) - o X

o X +
E'EJ IDLE Shell 3.13.6 File Edit Format Run Options Window Help
File Edit Shell Debug Options Window Help ‘# h2 :py (commnent: #)
Python 3.13.6 (tags/v3.13.6:4e66535, Aug ¢t main():
AMD64)] on win32 . . .
Enter "help" below or click "Help" above _ (comment by triple quote string) _
N — input: built-in function: prompt the user for input
E>>>X [1] output a prompt ("hello, darkness my old friend.)
) 1 [2] get the input value from the user.
>>> 0 0 0 0 0 0
I =: assignment statement: value in the right hand side is assigne
| Note: can be used in a variable.
n LI B |
|
input string = input ("Please enter a string -> ")
E T
) Multi-line string.
It expands many lines.
(
////Efgpﬁn standard built-in function to print arguments to the stan
|
' f-string in Python. It will evaluate any expression enclosed by
|
s-sting: {len(input string)} evaluted to 30 and included in the
1 v
print (f"length of the string: {len(input string)}")

1 item selected 1.03 KB

—

{input string.upper()}")

~+ et A~y o ~rr~a~ N) T\

print (f"in upper case:

UL B B = | R 2 A~

AT TNV NN e

image18.jpeg
A hey.py
File Edit Format Run Options Window Help
lipeint("hey")
2print(_ loader)

3
dmy list =
for item in my list:

5
6 print (item)

[10, 20, 30, 40]

hey.py (3.13.6)

‘ Syntax sensitive, color coded J

A breakpoint has been set in line #6

image19.png
[¢]

S>>x = 1
S>> x

>>>

|

X +

| A IDLE Shell 3.13.6

File

=
\@ f25h2a.py - C:\CS1_S26\website\demo\f25h2a.py (3.13.6) - o X

Edit Format Run Options Window Help

File Edit Shell Debug Options Window Help

AMD64)] on win32
Enter "help" below or click "Help" abgfe

1

#

h2.py (commnent: #)

Python 3.13.6 (tags/v3.13.6:4e66535, Aug|oct main(:
: | ''"" (comment by triple quote st

input: built-in function: prompt the user for input

//,ﬁl] output a prompt ("hello, darkness my old friend.)
[

2] get the input value from the user.

=: assignment statement: value in the right hand side is assigne

Note: can be used in a variable.

1 item selected 1.03 KB |

—SEEe—sErias— input ("Please enter a string -> ")

Multi-line string.
It expands many lines.

pripgp: standard built-in function to print arguments to the stan

f-string in Python. It will evaluate any expression enclosed by

s-sting: {len(input string)} evaluted to 30 and included in the

print (f"length of the string: {len(input string)}")

print (f"in upper case: {input string.upper()}")

Nanma e L LIS AT ANt TANY NN . 2 A9+ A4+ A~ 1 ~vtr9~a~)\ 1 1Y

image20.png
| A IDLE Shell 3.13.6
File

>>>
>>>

>>>

Edit Shell Debug Options Window Help

‘ réa f25h2a.py - C:\CS1_S26\website\demo\f25h2a.py (3.13.6) - o X

File

Edit Format Run Options Window Help

Python 3.13.6 (tags/v3.13.6:4e66535, Aug
AMD64)] on win32

Enter "help" below or click "Help" above
x =1

X

1

#

def main() :

h2 .py (I F5
Run... Customized Shift+F5
Check Module Alt+X

Python Shell

"'t (cor ote string)

input: built-in function: prompt the user for input
[1] output a prompt ("hello, darkness my old friend.)
[2] get the input value from the user.

T T

=: assignment statement: value in the right hand side is assigne
Note: can be used in a variable.

input string = input ("Please enter a string -> ")

Multi-line string.
It expands many lines.

print: standard built-in function to print arguments to the stan

f-string in Python. It will evaluate any expression enclosed by

s-sting: {len(input string)} evaluted to 30 and included in the

print (f"length of the string: {len(input string)}")

image21.png
A |DLE Shell 3.13.6

File

A f25h2a.py - C:\CS1_S26\website\demo\f25h2a.py (3.13.6)

File Edit Format Run Options Window Help

Edit Shell Debug Options Window Help

>>>
>>>

>>>

>>>

Python 3.13.6 (tags/v3.13.6:4e66535, Aug
AMD64)] on win32

Enter "help" below or click "Help" above
X 1

h2.py (commnent: #)
def main() :

(comment by triple quote string)

input: built-in function: prompt the user for input
[1] output a prompt ("hello, darkness my old friend.)
[2] get the input value from the user.

assignment statement: value in the right hand side is assigne

Please enter a string -

TaeC-\CS1 S26\we
c22£i3~ﬁ?rld
lengtl"A of the string: 11

in uprler case: HELLO WORLD
in lowler case: hello world

15

585 words

o

Note: can be useo—=——=-vuariable.

Enput("Please enter a string -> ")]

input string]

rTr

Multi-line string.
It expands many lines.

print: standard built-in function to print arguments to the stan

f-string in Python. It will evaluate any expression enclosed by

s-sting: {len(input string)} evaluted to 30 and included in the

print (f"length of the string:

{len (input string)}")

Text Predictions: On @ f§< Accessibility: Investigate

B3,

{input string.upper()}")
{input string.lower ()1")

print (f"in upper case:
print (f"in lower case:

image22.png
_& f25h2a.py - C:\CS1_S26\website\demo\f25h2a.py (3.13.6) - o

A IDLE Shell 3.13.6 - m] X
File Edit Shell Debug Options Window Help
Python Go to File/Line 13.6:4e66535, Aug 6 2025, 14:36:00) [MSC v.1944 64 bit (»
amMpe64) | IEE T
[Enter " StackViewer lick "Help" above for more information.
>>>x = 1 Auto-open Stack Viewer user for input
>SS % my old friend.)
I 1
>>>
================== RESTART: C:\CS1 S26\website\demo\f25h2a.py ================== | [100C hand side 1s assign

Please enter a string -> hello world
length of the string: 11

in upper case: HELLO WORLD

in lower case: hello world

>>>
‘ string -> ")

print arguments to the sta

any expression enclosed by
| to 30 and included in the

put string)}")

v

Iln 12 Cal* ODhav~~~~ 7\ 1 "1\

image23.png
10

| File

\ -Ea f25h2a.py - C:\CS1_S26\website\demo\f25h2a.py (3.13.6) - o

X aF
\V.VELIDLESheII 3.13.6 File Edit Format Run Options Window Help
Edit Shell Debug Options Window Help # h2.py (unMduIe q 'f 5
1 . t t
Python 3.13.6 (tags/v3.13.6:4e66535, Aug (¢f main() : EESNESEECUECRENIS

S ——

e | opw | g

AMD64)] on win32
Enter "help" below or click "Help" above
X

RESTART: C:\CS1l S26\we
Please enter a string -> hello world
length of the string: 11

in upper case: HELLO WORLD

in lower case: hello world

[DEBUG ,“;‘HD bug Control F
; ebug Contro
[DEBUG
» Stack "~ Source
[DEBUG Go‘Step Over | Out | Quit
* Locals™ Globals
(None)
Locals
None

Check Module
Python Shell

Alt+X

(co1 ote string)

input: built-in function: prompt the user for input
[1] output a prompt ("hello, darkness my old friend.)
[2] get the input value from the user.

T T

assignment statement: value in the right hand side is ass

Note: can be used in a variable.

input string

input ("Please enter a string -> ")

Multi-line string.
It expands many lines.
print: standard built-in function to print arguments to the

f-string in Python. It will evaluate any expression enclosed

s-sting:

{len(input string)} evaluted to 30 and included in

print (f"length of the string:

{len (input string)}")

~Nranrnt+ (FTNT A TTirTAYr ~aacaAne a1 TS i () 1LYy

image24.jpeg
Go

Step ‘ Over

A Debug Control - O X

Stack © Sours=

Out | Quit

J

¢

|_file_

__annotations|
_ builtins__
doc__

__loader__

__hame__

hey.py:6: <module>()

'bdb'.run(), line 666: exec(cmd, globals, locais)

>'_main__'.<module>(), line 6: print(item)

* Locals = Globals

Locals

_{

<module ‘builtins' (built-in)>

None
'CA\\\CST_F25\\...\\idle\\\\hey.py'
<class '_froz...Itinlmporter'>

' _main_'

package¢
_spec__

None
None

image25.jpeg
| 8 |2y @,n—,a,_,a‘z,m

teNotes\tools\idle\hey.py (3.1

4>>> [DEBUG

)

A “IDLE Shell 3.13.6 - C/CS1_F25/privatel
File Edit Shell Debug Options Window Hel
20
30
40

ON]
OFF]
ON]

>>> [DEBUG
>>> [DEBUG
>>>

hey

10

20

30

40
>>> [DEBUG
>>>

= REST]

ON]
= REST

= REST]

= REST|
hey
<class '_frozen_imp
10
20
30

A hey.py - CACST_F25\;

File Edit Format Run Options Window Help
print ('hey')
print(_ loader_)

my list = [10, 20, 30,
for item in my list:

Lo

Debug Control

¢ Stack * Source

Go Step ‘ OverlOut ‘ Quit
= » Locals - Globals

hey.py:6: <module>()

'bdb".run(), line 666: exec(cmd, globals, locals)
> '_main__"

module>(), line 6: print(item)

Locals.
_annotations__{}
|_builtins_ <module ‘buifdns’ (built-in)>
_doc__ None
|_file_
_loader__
name
package
spec
item

my_list [10, 20, 30, 40]

image26.png
Ml Lib X 4k

< - ™ G (J > ThisPC > 0OS(C) > Python > Python313 > Lib > Search Lib

® New v <}{) © 0 @D ® @ TN sort ~

VieW v Yy

~

> T Program Files (J Name Date modified
[@ tartile.py 8/6/2025 4:14 P
N .
~ Program Files (x86) & tempfile.py 8/6/2025 4:14 P
> 7 ProgramData @ textwrap.py 8/6/2025 4:14 P
" ProgramFilesFolder @ this.py 8/6/2025 4:14 P
v T Python @ threading.py 8/6/2025 4:14 PM Python File 56 KB
> 71 Python38-32 @ timeit.py 8/6/2025 4:14 PM Python File 14 KB
o Puth @ token.py 8/6/2025 4:14 PM Pytbedn File 3 KB
v Python313
@ tokenize.py 8/6/2025 4:14 PM Python File 22 KB
T DLLs
@ trace.py 8/6/2025 4. 14PM Python File 30 KB
>
- Doc & traceback.py 8/6#2025 4:14 PM Python File 67 KB
> "include |8 tracemalloc.py 8/6/2025 4:14 PM Python File 19 KB
> b & tty.py 8/6/2025 4:14 PM Python File 3 KB
Bl libs ‘ @ turtle.py 8/6/2025 4:14 PM Python File 146 KB
> B Scripts @ types.py 8/6/2025 4:14 PM Python File 12 KB
@ typing.py 8/6/2025 4:14 PM Python File 134 KB

- -

image27.png
19U|

import turtle
importing turtle moduis+—l1 able

Create a screen object iﬁ/;pl%&ff

screen = turtle. Screen()

image28.png
A |DLE Shell 3.13.6

File Edit Shell Debug Options Window Help

777

================== RESTART: C:\CSl_SZ6\webF‘*”"““A“”Ekq“ —————————————————————
Please enter a string -> hello, hello ¢ Python Turtle Graphics - O x
length of the string: 12

in upper case: HELLO, HELLO
in lower case: hello, hello
>>> [DEBUG ON]

>>> [DEBUG OFF]

>>> [DEBUG ON]

>>>

Please enter a string -> hello, world
... [DEBUG OFF]
>>>

============—=———== RESTART: C:\CS1_
Please enter a string -> hello, wofld
length of the string: 12

in upper case: HELLO, WORLD
in lower case: hello, world
>>> [DEBUG ON]

>>>

================== RESTART: Ct\CSl_SZ6\web
Please enter a string -> hello, world
length of the string: 12
[DEBUG OFF]

>>>
=========================gy====== RESTART:
>>>1import turtle

>>>gscreen = turtle.Screen ()
>>>

e AISO, try to run 1t In IDLE D e

image29.png
>>>1import turtle

screen variable refers to an object, of the
turtle._Screen class. Stored in the memory
>>>gscreen = turtle.Screen ()

{ocation.

<turtle. Screen object at 0x00000284B93434D0>
>>>

1 e A7

image30.png
>>>
>>>

>>>
>>>

>>>

SN~NLul L LT . oL e ll

x = 10
type (x)
<class
y = 10

type (v)
<class

'int'>

'int'>

v b ab VUauvuluvuviuvvavaTbJ 332UV s

An object is an instance of a class. E.g., x and y are of the class
"int".

image31.png
A IDLE Shell 3.13.6 - o X
File Edit Shell Debug Options Window Help

LULDUG UL |
>>>
================== RESTART: C:\CS1l S26\website\demo\£f25h
2a.py ==================
Please enter a string -> hello, world 11le and make it available
length of the string: 12
in upper case: HELLO, WORLD
in lower case: hello, world
>>> [DEBUG ON]
>>> :
e RESTART: C:\CS1 S526\website\demo\f25h ;PythonTurtleGraph'cs -
2a.py ==================
Please enter a string -> hello, world
length of the string: 12
[DEBUG OFF]
>>> /
======== ==== RESTART: . ======== 4
>>> 1import
>>> screen
>>>screen 4/27
<turtle. Screen object at _£x00000284B934234
>>>x = 10
>>>type (x)
<class 'int'>
>>>y = 10
>>>type (y)
<clag S shape
>>>gscreen.setup (width=300, height=300)
55| ylor
Ln: 56 Col: 0

image32.png
>>>
>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>
>>>

>>>
>>>

e =S e SN == =

import turtle
screen = turtle™Screen ()
screen
<turtle. Screen o0B3
x = 10
type (x)
<class 'int'>
y = 10
type (v)

L 0x00000284B93434D0>

' Python Turtle Graphics

<class 'int'>
screen.setup (widt
screen.bgcolor ("1li
pen.shape ("turtle'
Traceback (most recent call last):

File "<pyshell#11>", line 1, in <module>

pen.shape ("turtle™")

NameError: name 'pen' is not def
LP]

pen = turtle.Turtle()

=1

fed. Did you mean:

'len

B 3

Ln: 63 Col: 0,

plor

hape

image33.png
>>>Ix 10

>>>type (x)
<class

>>>y = 10

>>> type (y)
<class 'int'>

>>>screen.setup (width=300, height=300)

>>>screen.bgcolor ("lightyellow™)

'int'>

? Python Turtle Graphics

>>>pen.shape ("turtle")

Traceback (most recent call last):

File "<pyshell#11>", line 1, in <module>
pen.shape ("turtle™")

NamekError: name 'pen' is not defined. Did you mean: 'len

v
>>>pen = turtle.Turtle() Ps |
>>>pen.shape ("turtle") # Change the turtle's shape
)lo:/
>>>pen.color ("green") # Set the turtle's color | L — ‘
>>>pen.pensize (3) ’——”,,——””— ———————__,,——””’——,r
>>>pen.forward (100) # Move forward by 100 units =
>>>pen.right (90) ————__,,———” .
>>>pen.forward (100) # Move forward by 100 units ani ’,//’//////)’;*'
>>>pen.right (90) ;774‘:
>>>pen.forward (100) # Move forward by 100 units i
>>>pen.right (90) ’///,//’/////]Illtis
>>>pen.forward (100) # Move forward by 100 units

>35> |

image1.png
1 UUVU
>>>print (x)

1000

>>>print (f'"length of the string:
lengkh of Tirsstring: 30

{len (input string)}")

>>>|
-

-

f-string in Python. It will evaluate any
expression enclosed by { and }.

print: standard built-in
function to print arguments
to the standard output .)

image2.png
>>>

L]
rn

>>>

>>>

>>>

1000

print (f"length of the string:|{len(input string) }|')
length oT~ske string: 30
print ("length OF%

length &f the string:
len (inpu) string)

30

image3.png
>>>x = 10

>>>y = 'Bun'
>>>'"{Bun}: {x}'
'"{Bun}: {x}'

>>> " {y}: {x}'
"{yt: {x}'
>>>f"{y}: {x}'
'Bun: 10"
>>> X
10
>>>y
'Bun'
<SS |

image4.png
ile Edit Search View

=

| f25h2a.py 2

Encoding Language Settings

Bl4DRIDe Mg *c

Tools

= 1

Macro~Run Plugins Window 2

- EEEDE

1

O O J O O i W I

11
12
13
14
15
16
17

1

|
W
def

h?2.py (commnent: #)

(): |

input string

ut

N\CS1_S26\website\demo>]

F=] C:\Windows\System32\cmd.e X + v

Microsoft Window ersion 10.0.26100.7462]
(c) Microsoft Corporatid A1l rights reserved.

:\CS1_S26\website\demo>python f25h2a.py
File "C:\CS1_S26\website\demo\f25h2a.py", line 4
''' (comment by triple quote string)

ANANANANNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNANN

IndentationError: expected an indented block after fupction definition

C:\CS1_S26\website\demo>python f25h2a.py
8t C: \CS1_S26\website\demo\f25h2a.py", line U
"' (comment by triple quote string)

ANNANANNNNNNNNNN ANANANAANANANANANAANANNNNNNNNDNN

IndentationError: expected iy string in the body of main():
level 2. Need to have a required
indentation.

Top level: no indentation

Second level (body of main()
function. Must have 1 level of
identation.

image5.png
>>>
>>>

>>>

>>>

>>>

>>>

>>>

NSNS

y = 'Bun'

'"{Bun}: {x}"'
'"{Bun}: {x}"
"{y}: {x}'
"{yt: {x}'
f'{y}: {x}'
'Bun: 10"

X

10

Yy

'Bun'’

print(), len() or input(): standalone function.

input_string.upper(): object.method();
input_string: string object. upper() is a
method/function of any string object.

P—

print (f"in upper case: |{input string.upper () }I')

in upper case:

HELLO WORLD, THIS IS THURSDAY.

