CSCI 1470.3 Classroom Notes and Demonstrations
8/27/2025
The Computational Paradigm
by K. Yue
1. Paradigm
· Every discipline has a paradigm: targets, objectives, considerations, bodies of knowledge, methodologies, standards, etc.
Example #1: In pure mathematics (as opposed to applied mathematics)
· An important objective to prove theorems which are true under a set of axioms (statements assumed to be true without proof).
· Methodologies: theorem proving, ...
· Quality considerations:
· primary: truth or correctness.
· simplicity and beauty.
· ...
E.g., the Pythagorean theorem: the sum of the squares of the two shorter sides (legs) of a right-angled triangle is equal to the square of the longest side (hypotenuse)
· Axioms: Five basic axioms of Euclidean geometry.
[image: A triangle with a mathematical equation

AI-generated content may be incorrect.]
· A mathematical conjecture is a statement that is believed to be true based on observations and patterns but has not yet been proven or disproven.
E.g., Goldbach's Conjecture (stated in 1742): Every even integer greater than 2 can be expressed as the sum of two prime numbers. E.g.,
· 16 = 5 + 11
· 100 = 3 + 97 = 11 +89 = 17 + 83 = 29 + 71 ...
The Goldbach's conjecture is very easy to state but extremely hard to prove (one way or the other).
Example #2: History
· An important objective: understand the past to better comprehend the present and potentially inform the future.
· Methodology: a range of techniques and procedures for gathering, analyzing, and interpreting evidence from primary and secondary sources to construct a narrative and understanding of historical events.
· Some quality considerations:
· Source selection, evaluation and preparation
· Objectivity and bias mitigation
· Methodology rigor
· Narrative and communication
2. Computing and software development
· What is computer science?
· An example: Computer science (CS) is the study of computers and algorithmic processes, including their principles, their hardware and software designs, their applications, and their impact on society. (Tucker et al., 2003.)
· It is difficult to find another discipline more applicative than computer science.
· Computer professionals should be generalists.
Software Development
· primary objective: problem solving using software.
· methodologies: computer and software development techniques (that is what your computing degree means).
· One clear quality consideration: correctness, or does the program provide the right answer (expected output)?
· Software testing is about increasing confidence in correctness.
· A test case specifies:
· input
· expected output
· A test case is passed when the expected output is equal to the actual output.
E.g., a Python to output the square of an input integer.
Test cases:
	Case #
	Input
	Expect Output

	1
	3
	9

	2
	65
	4425

	3
	0
	0

	4
	-65
	4425

	5
	123456789
	15241578750190521

	6
	'hello'
	Error: input is not an integer.

· Some important software development quality considerations:
1. Correctness:
1. Software verification:
1. Software built according to the software specification. Is the software built right?
2. Internal correctness
3. e.g. does the program output the square of the input number right?
2. Software validation:
1. Software met the needs of the problem. Is it the right software?
2. Constructing the right software specification: requirement analysis.
3. External correctness
4. E.g., do the users want the square of the input number?
2. Performance
3. Cost
4. Meeting timeline
5. Effectiveness
6. Reliability
7. Maintenance: software has a life cycle
8. Security and privacy
· Do not just focus on internal correctness or software verification.
3. Skills/Traits/Quality/Characteristics of software developers
· People of course have different opinions.
· However, there are many commonalities.
3.1 A simple non-scientific experiment
Conducted a simple Google search for good software developer quality.
Four sources:
1. Coding Temple, 6 Key Qualities of Successful Software Engineers, https://www.codingtemple.com/blog/6-key-qualities-of-successful-software-engineers/.
2. MatchTech, 7 qualities exceptional developers possess, https://www.matchtech.com/resources/7-qualities-exceptional-developers-possess.
3. UMBC, How To Know If Software Development Is The Right Job For You, 8 Hard To Learn Software Developer Skills You Need, https://www.umbctraining.com/software-developer-skills/.
4. AlltheCode blog, Software Engineer Personality: 5 Traits For A Great Career, https://allthecode.co/blog/post/software-engineer-personality.
Results: quality/trait/characteristics of good software developers.
	Coding Temple
	MatchTech
	UMBC
	AlltheCode

	Technical Expertise
	Solid technical knowledge
	Curiosity
	Curiosity

	Problem-Solving Skills
	Maintains an end-user focus
	Creativity
	Persistence

	Attention to details
	Fast self learner
	Empathy
	Ability to learn

	Strong communications and collaboration skills
	Strong communication skills
	Patience, Perseverance and Problem-Solving
	Focus

	Continuous learning and adaptability
	Dependent time and task management
	Analytical
	Pragmatism

	Passion for the craft
	A good team player
	Detail-oriented and organized
	

	
	'Never say die' attitude
	Adaptability
	

	
	
	Communication
	

· Although you can see their differences, some focus more on skills and qualities. Others focus more on traits.
· However, there are some common themes:
1. Strong technical knowledge and expertise
2. Strong problem-solving skills: analytical
3. Good problem understanding: empathy, focus on end users, ...
4. Strong communication skills
5. Strong collaboration skills: good team play, dependable
6. Continuous and fast self-learning
7. Curiosity: passion for the craft
8. Persistence: never day die, passion for the craft
9. Organization and management skills
10. Detail-oriented
11. Adaptability
Some Lessons
1. We tend to focus on technical matters in our computing degrees.
2. Success in the computing profession requires much more than technical expertise. It will be increasing more so.
3. Personal traits, characteristics, habits, etc. take a lot of effort and time to develop.
4. Consider spending effort and time to cultivate them early and persistently.
5. Your university degree may give you an entrance ticket to the job market but it is not sufficient by itself.

Function:
E.g. f(x,y) = x + 2 * y;
f(2,3) -> 8

Python code can be put together into modules

Introduction to Turtle Graphics in Python
by K. Yue
1. Turtle Graphics
· The Python turtle module is a built-in library (no need to download from an external source) that provides a way to create graphics and drawings.
· In turtle graphics, there are two major concepts:
1. A window/screen/digit canvas for the turtle to move and draw.
[image: A screen shot of a computer

AI-generated content may be incorrect.]
2. A turtle with a pen that can move and draw (if the pen is down).
Turtle:
1. The turtle is:
1. in a co-ordinate location (x,y), initially (0,0)
2. facing a direction (initially right)
3. holding a pen which can be up and down (initially down). If the pen is down, the turtle draws while moving.
2. There are functions to control the turtle. Two popular ones are:
1. forward(distance): move the turtle forward by a distance. If the pen is down, the turtle also draws.
2. right(degree): turn its face to right with a degree.
Example:
Consider square.py.txt (remove .txt when download):
import turtle

Create a screen object in turtle
screen = turtle.Screen()

Set screen dimensions
screen.setup(width=300, height=300)

Set background color
screen.bgcolor("lightyellow")

Create a turtle object
pen = turtle.Turtle()
pen.shape("turtle") # Change the turtle's shape
pen.color("green") # Set the turtle's color
pen.pensize(3) # Set the pen's size

pen.forward(100) # Move forward by 100 units
pen.right(90)
pen.forward(100) # Move forward by 100 units
pen.right(90)
pen.forward(100) # Move forward by 100 units
pen.right(90)
pen.forward(100) # Move forward by 100 units

screen.exitonclick()

[image: A screenshot of a computer

AI-generated content may be incorrect.]
[image: A screenshot of a computer

AI-generated content may be incorrect.]

[image: A screenshot of a computer

AI-generated content may be incorrect.]
[image: A screenshot of a computer

AI-generated content may be incorrect.]
[image: A screenshot of a computer

AI-generated content may be incorrect.]

[image: A screenshot of a computer

AI-generated content may be incorrect.]

Current turtle location: (0,0) facing right (default initial setting of the turtle).
[image: A screenshot of a computer

AI-generated content may be incorrect.]
[image: A screenshot of a computer program

AI-generated content may be incorrect.]
[image: A screenshot of a computer

AI-generated content may be incorrect.]

·
·
· Download and run square2.py.txt. This is a version of square.py.txt that you can use as the basis of your HW assignment.
· Also, try to run it in IDLE by copying and pasting one statement at a time.
Explanations:
· "import turtle": import the built-in turtle module. This allows the program to use the turtle object.
· "pen = turtle.Turtle()" creates a turtle object and refers to it as "pen"
· "pen.forward(100)" moves the pen. Since the pen is down, the turtle also draws.
· "pen.right(90)" turns the turtle right 90 degrees.
· screen.exitonclick(): pause until the screen is clicked on to exit.

image2.png
' Python Turtle Graphics - o X

image3.png
LallipIcC.

\
/

3>>>screen = turtle.Screen|()

& IDLE Shell 3.10.8
File Edit Shell Debug Options Window Help

’ Python Turtle Graphics

~

Python 3.10.8
0:30) [MSC v.1933 64 bit
Type "help", "copyright",
more information.
>>>import turtle

>>>

(tags/v3.10.8:aaaf517, Oc#z’11 2022,

(AMD64)] onin32
"creditg” or "license ()"

image4.png
A IDLE Shell 3.10.8 - O X

File Edit Shell Debug Options Window Help
Python 3.10.8 (tags/v3.10.8:aaaf517, Oct 11 202 “urtle
2, 16:50:30) [MSC v.1933 64 bit (AMD64)] on win

32
Type "help", "copyright", "credits" or "license

f Python Turtle Graphics -

()" for more information.
>>>import turtle

>>>screen = turtle.Screen() =300
>>>gscreen.setup (width=300, height=300) t"
>>>

the turtle™s shape
turtle's color
S size

Ln: 6 Col: 0

image5.png
A IDLE Shell 3.10.8
File Edit Shell Debug Options Window Help

>>>
>>>
>>>
>>>
>>>
>>>

Python

2, 16:50:30)

32

Type "help",

import
screen
screen
screen
screen

3.10.8 (tags/v3.10.8:aaafb517, Oct 11 202
[MSC v.1933 64 bit (AMD64)] on win

turtle
= turtle.Screen|()
.setup (width=300,

height=300)
.bgcolor ("lightyellow™)

.bgcolor ("green")

"copyright", "credits" or "license
()" for more information.

@ Python Turtle Graphics

image6.png
A |IDLE Shell 3.10.8 - o X

File Edit Shell Debug Options Window Help
Python 3.10.8 (tags/v3.10.8:aaaf517, Oct 11 202 “irtle
2, 16:50:30) [MSC v.1933 64 bit (AMD64)] on win

32

Type "help", "Copyright", "credits" or "license @PythonTurtIeGraphics -

()" for more information.
>>>import turtle

>>>screen = turtle.Screen|() _
>>>gscreen.setup (width=300, height=300) t"3()o
>>>screen.bgcolor ("lightyellow™)
>>>screen.bgcolor ("green™)
>>>screen.bgcolor ("lightyellow™)
>>>pen = turtle.Turtle() > »
>>>|

the turtle's shape

image7.png
A |IDLE Shell 3.10.8 - O X

File Edit Shell Debug Options Window Help
Python 3.10.8 (tags/v3.10.8:aaafb17, Oct 11 202
2, 16:50:30) [MSC v.1933 64 bit (AMD64)] on win
32
Type "help", "copyright", "credits" or "license
()" for more information.

>>>1import turtle

>>>screen = turtle.Screen /()

>>>screen.setup (width=300, height=300)

>>>screen.bgcolor ("lightyellow™)

>>>screen.bgcolor ("green™)

>>>screen.bgcolor ("lightyellow™)

>>>pen = turtle.Turtle()

>>>pen.shape ("turtle") # Change the turtle's shape

>>>

S shape

hrtle

t=300

£

Fhoe fhr#lo'q aharoa

image8.png
A |IDLE Shell 3.10.8 - o X

File Edit Shell Debug Options Window Help

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

Python 3.10.8 (tags/v3.10.8:aaafb517, Oct 11 202
2, 16:50:30) [MSC v.1933 64 bit (AMD64)] on win
32

Type "help", "copyright", "credits" or "license
()" for more information.

import turtle

screen = turtle.Screen ()

screen.setup (width=300, height=300)
screen.bgcolor ("lightyellow")

screen.bgcolor ("green")

screen.bgcolor ("lightyellow")

pen = turtle.Turtle()

hrtle

t=300|

f Python Turtle Graphics

pen.shape ("turtle™) # Change the turtfle's ghase
pen.color ("green")—Sect the turtle's color

pen.pensize (3)

image9.png
A |IDLE Shell 3.10.8 - o X

File Edit Shell Debug Options Window Help

Python 3.10.8 (tags/v3.10.8:aaafb517, Oct 11 202
2, 16:50:30) [MSC v.1933 64 bit (AMD64)] on win
32

Type "help", "copyright", "credits" or "license
()" for more information.

>>>import turtle

>>>gscreen = turtle.Screen ()

>>>screen.setup (width=300, height=300)
>>>screen.bgcolor ("lightyellow™)
|>>>screen.bgcolor ("green")

|>>>screen.bgcolor ("lightyellow")

>>>pen = turtle.Turtle()

[>>>pen.shape ("turtle") # Change the turtle's shape

'>>>pen.color("green") # Set the turtle's color
>>>pen.pensize (3) —_______________————"—_—__—__—_—
[>>>pen.forward (100)

t=300

>>>|

f Python Turtle Graphics

image10.png
- . .

A 1 N (1 1 £ 1 ! SEEE U U S A J A J 1 N _\

[A U T

A |DLE Shell 3.10.8
File Edit Shell Debug Options Window Help

2,
32
Typ
0"
imp
scr
scr
scr
scr
scr
pen

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

Python 3.10.8

pen.
pen.
pen.
pen.
pen.

(tags/v3.10.8:aaafb517, Oct 11 202
16:50:30) [MSC v.1933 64 bit (AMD64)] on win

e "help", "copyright", "credits" or "license
for more information.

ort turtle

een = turtle.Screen|()

een.setup (width=300, height=300)

een.bgcolor ("lightyellow™)

een.bgcolor ("green™)

een.bgcolor ("lightyellow™)

turtle.Turtle ()

shape ("turtle") # Change the turtle's shape

color ("green") # Set the turtle's color

forward (10

t=3 O O . f Python Turtle Graphics

pensize (3)
0)

right (90)

image11.png
A |IDLE Shell 3.10.8 - O X

File Edit Shell Debug Options Window Help
Python 3.10.8 (tags/v3.10.8:aaafb17, Oct 11 202

2, 16:50:30) [MSC v.1933 64 bit (AMD64)] on win
32
Type "help", "copyright", "credits" or "license

for more information.

>>>1import turtle

>>>screen = turtle.Screen|()

>>>screen.setup (width=300, height=300)
>>>screen.bgcolor ("lightyellow")

>>>screen.bgcolor ("green")

>>>screen.bgcolor ("lightyellow")

>>>pen = turtle.Turtle()

>>>pen.shape ("turtle") # Change the turtle's shape
>>>pen.color ("green") # Set the turtle's color
>>>pen.pensize (3)
>>>pen.forward (100)
>>>pen.right (90)
>>>pen.forward (100)

()"

-

t=300)

the t]

5 S1Z¢

>>>|

rd by

forell ———

image1.png
D
l \ a+b*=¢?
—b—

