DASC 5333 Database Systems for Data Science
CSCI 4333 Design of Database Systems
Spring 2023
Section 1 Suggested Solution to Final Examination

[1] (a) For example:

SELECT DISTINCT d.deptCode,

d.deptName AS department,

IFNULL (COUNT (DISTINCT s.stuId), 0) AS “number of enrolled majors’
FROM student AS s INNER JOIN enroll AS e USING (stuIld)

RIGHT JOIN department AS d ON (s.major = d.deptCode)
GROUP BY d.deptCode, department;

(b)

SELECT DISTINCT f.facId,
CONCAT (f.fname, ' ', f.lname) AS faculty,
COUNT (s.stuID) AS “Number of advisees’

FROM faculty AS f INNER JOIN student AS s ON (s.advisor = f.facId)
INNER JOIN department AS d USING (deptCode)

WHERE d.schoolCode = 'CSE'

GROUP BY f.facId, faculty

HAVING “Number of advisees >= 2;

(c)

WITH t1 AS
(SELECT DISTINCT classId, COUNT (stuld) AS enrollment
FROM enroll
GROUP BY classId),
t2 AS (SELECT MAX (enrollment) AS maxEnroll FROM tl)
SELECT tl.classId,
CONCAT (co.rubric, ' ', co.number) AS course,
tl.enrollment
FROM tl1 INNER JOIN class AS t USING (classId)
INNER JOIN course AS co USING (courseld)
INNER JOIN t2
WHERE tl.enrollment + 2 >= t2.maxEnroll
ORDER BY tl.enrollment DESC;

(2)
(a) F (b) T () F (d F () T

(f) T € T (hy T (i) F (i) F

(3)

(a) R(A,B,C,D) with {B->D, C->D, D->A}
CK: [1] BC; prime: B, C; Highest NF: 1NF; B->D and C->D violate 2NF.

(b) R(A,B,C,D) with {B->AC, A->BD}
CK: [1] A, [2] B; prime: A, B; Highest NF: BCNF

(c) R(A,B,C,D) with {B->AC, A->BD, C->D}
CK: [1] A, [2] B; prime: A, B; Highest NF: 2NF; C->D violates 3NF.

(4) For R(A,B,C,D,E) {A->B, AB->CD, D->AC, C->E}

(a) Canonical cover: {A->BCD, D->A, C->E} (not required)
Candidate Key: [1] A, [2] D; Prime attributes: A, D

(b) 2NF, as C->E violates 3NF

(c) R1(A,B,C,D) {A->BCD, D->A} in BCNF, and R2(C,E) {C->E} in BCNF

(5) For example:

print ('<h3>Comparing two students</h3>")

print ("""’

<table border='1l'>
<tr><th>Id</th><th>Student</th><th>Major department</th>
<th>advisor facId</th><th># classes enrolled</th>

</tr>

'l')

SQL
query=l|l
SELECT s.stuld AS sid,
CONCAT (s.fName, ' ',s.lName) AS name,
IFNULL (d.deptName, 'Undeclared') AS major,
IFNULL (s.advisor, 'Not assigned') AS advisor,
COUNT (e.classId) as numClasses
FROM student AS s LEFT JOIN enroll e ON (s.stuld = e.stuld)
LEFT JOIN department AS d ON (s.major = d.deptCode)
WHERE (s.stuld = %s OR s.stuld = %s)
GROUP BY sid, name, major, advisor;
T
cursor.execute (query, (str(sidl), str(sid2)))
for (sid, name, major, advisor, n_classes) in cursor:
print (' <tr><td>' + str(sid) +
'</td><td>' + name + '</td><td>' +
major + '</td><td>' + str(advisor) + '</td><td>' +
str(n_classes) + '</td></tr>")

print ('</body></html>")

(6) For example:

use toyu
db.student.find(
{ "$Sand": [{"$or": [{"major": "CINF"}, {"minor": "CINEF"}]} ,

{ "ach": {"Sgte": 15}} 1 },
{ "stuIld": 1,

(ii)
(iii)

"student": { Sconcat: ["$fname", " ", "Slname"] },
"major": 1,

"minor": 1,

"ach credits": "S$Sach",

" oid": 0 }

(a) BC

For Tutoring(Tutorld, TutorEMail, Studentld, StudentEMail, Subjectld, SubjectName):

Tutorld -> TutorEMail

Studentld -> StudentEMail
Subjectld -> SubjectName
SubjectName -> Subjectld

CK: (1) {Tutorld, Studentld, Subjectld}, (2) {Tutorld, Studentld, SubjectName}

INF since Tutorld -> TutorEMail and Studentld -> StudentEMail violate 3NF.

