
DASC 5333 Database Systems for Data Science
CSCI 4333 Design of Database Systems

Spring 2023
Section 1 Suggested Solution to Final Examination

[1] (a) For example:

SELECT DISTINCT d.deptCode,

 d.deptName AS department,

 IFNULL(COUNT(DISTINCT s.stuId), 0) AS `number of enrolled majors`

FROM student AS s INNER JOIN enroll AS e USING (stuId)

 RIGHT JOIN department AS d ON (s.major = d.deptCode)

GROUP BY d.deptCode, department;

(b)

SELECT DISTINCT f.facId,

 CONCAT(f.fname, ' ', f.lname) AS faculty,

 COUNT(s.stuID) AS `Number of advisees`

FROM faculty AS f INNER JOIN student AS s ON (s.advisor = f.facId)

 INNER JOIN department AS d USING (deptCode)

WHERE d.schoolCode = 'CSE'

GROUP BY f.facId, faculty

HAVING `Number of advisees` >= 2;

(c)

WITH t1 AS

(SELECT DISTINCT classId, COUNT(stuId) AS enrollment

 FROM enroll

 GROUP BY classId),

t2 AS (SELECT MAX(enrollment) AS maxEnroll FROM t1)

SELECT t1.classId,

 CONCAT(co.rubric, ' ', co.number) AS course,

 t1.enrollment

FROM t1 INNER JOIN class AS t USING (classId)

 INNER JOIN course AS co USING (courseId)

 INNER JOIN t2

WHERE t1.enrollment + 2 >= t2.maxEnroll

ORDER BY t1.enrollment DESC;

(2)
(a) F (b) T (c) F (d) F (e) T

(f) T (g) T (h) T (i) F (j) F

(3)

(a) R(A,B,C,D) with {B->D, C->D, D->A}

 CK: [1] BC; prime: B, C; Highest NF: 1NF; B->D and C->D violate 2NF.

(b) R(A,B,C,D) with {B->AC, A->BD}

 CK: [1] A, [2] B; prime: A, B; Highest NF: BCNF

(c) R(A,B,C,D) with {B->AC, A->BD, C->D}

 CK: [1] A, [2] B; prime: A, B; Highest NF: 2NF; C->D violates 3NF.

(4) For R(A,B,C,D,E) {A->B, AB->CD, D->AC, C->E}

(a) Canonical cover: {A->BCD, D->A, C->E} (not required)

 Candidate Key: [1] A, [2] D; Prime attributes: A, D

(b) 2NF, as C->E violates 3NF

(c) R1(A,B,C,D) {A->BCD, D->A} in BCNF, and R2(C,E) {C->E} in BCNF

(5) For example:

print('<h3>Comparing two students</h3>')

print('''

<table border='1'>

<tr><th>Id</th><th>Student</th><th>Major department</th>

<th>advisor facId</th><th># classes enrolled</th>

</tr>

''')

SQL

query = '''

SELECT s.stuId AS sid,

 CONCAT(s.fName, ' ',s.lName) AS name,

 IFNULL(d.deptName, 'Undeclared') AS major,

 IFNULL(s.advisor, 'Not assigned') AS advisor,

 COUNT(e.classId) as numClasses

FROM student AS s LEFT JOIN enroll e ON (s.stuId = e.stuId)

 LEFT JOIN department AS d ON (s.major = d.deptCode)

WHERE (s.stuId = %s OR s.stuId = %s)

GROUP BY sid, name, major, advisor;

'''

cursor.execute(query, (str(sid1), str(sid2)))

for (sid, name, major, advisor, n_classes) in cursor:

 print(' <tr><td>' + str(sid) +

 '</td><td>' + name + '</td><td>' +

 major + '</td><td>' + str(advisor) + '</td><td>' +

 str(n_classes) + '</td></tr>')

print('</body></html>')

(6) For example:

use toyu

db.student.find(

 { "$and": [{"$or": [{"major": "CINF"}, {"minor": "CINF"}]} ,

 { "ach": {"$gte": 15}}] },

 { "stuId": 1,

 "student": { $concat: ["$fname", " ", "$lname"] },

 "major": 1,

 "minor": 1,

 "ach credits": "$ach",

 "_id": 0 }

)

(7) (a) BC

(b) For Tutoring(TutorId, TutorEMail, StudentId, StudentEMail, SubjectId, SubjectName):

(i) TutorId -> TutorEMail
StudentId -> StudentEMail
SubjectId -> SubjectName
SubjectName -> SubjectId

(ii) CK: (1) {TutorId, StudentId, SubjectId}, (2) {TutorId, StudentId, SubjectName}

(iii) 1NF since TutorId -> TutorEMail and StudentId -> StudentEMail violate 3NF.

