DASC 5333 Database Systems for Data Science
Fall 2024
Section 1 Suggested Solution to Final Examination

[1] (a) For example:

SELECT DISTINCT s.stuld,
CONCAT (s.fname, ' ', s.lname) AS student,
COUNT (c.classId) AS “# enrolled Fall 2019 classes’
FROM student AS s LEFT JOIN enroll AS e ON (s.stuld = e.stuld)
LEFT JOIN class AS ¢ ON (e.classId = c.classId AND c.semester = 'Fall' AND
c.year = 2019)
GROUP BY s.stuld, student;

(b)

SELECT DISTINCT f.facId,
CONCAT (f.fname, ' ', f.lname) AS faculty,
COUNT (s.stuId) AS "“Number of advisees’
FROM student AS s INNER JOIN faculty AS f ON (s.advisor = f.facId)
GROUP BY f.facId, faculty
HAVING “Number of advisees'™ > 1;

()

WITH t1 AS
(SELECT facId
FROM faculty AS f INNER JOIN class AS c¢c USING (facId)
INNER JOIN course AS co USING (Courseld)
WHERE co.rubric = 'CSCI'
GROUP BY facId
HAVING COUNT (c.classId) >= 2)
SELECT f.facId,
CONCAT (f.fname, ' ', f.lname) AS faculty,
COUNT (s.stuId) AS “number of advisees’
FROM faculty AS f INNER JOIN tl USING (facId)
LEFT JOIN student AS s ON (f.facId = s.advisor)
GROUP BY f.facId, faculty;

(2)
@ T (b) T (€ T (d F () F

(f) F € T (h) F (i) F (i) F

(k) F

[a] R(A,B,C,D) with {C->AD, AB->D}; Canonical form: same
Highest NF:1NF ; CK: BC; C->D violates 2NF.

[b] R(A,B,C,D) with {C->AD, D->AC, B->C}; Canonical form: {C->AD, D->C, B->C};
Highest NF: 2NF; CK: [1] B; C->A violates 3NF

[c] R(A,B,C,D) with {C->AD, A->B, AB->C}; Canonical form: {C->AD, A->BC}
Highest NF: BCNF; CK: [1] A. [2] C

(4) For R(A,B,C,D,E) {A->BC, B-AC, CD->E}

(a) Canonical cover: {A->BC, B->A, CD->E}

(b) Candidate Keys: [1] AD, [2] BD; Prime attributes: A, B, D

(c) INF, as A->C and CD ->E violate 3NF

(d) R1(A,B,C) {A->BC, B->A } in BCNF, R2(C,D,E) {CD->E} and R3(A,D) {} in BCNF.

(5) For example:

Get HTTP parameters: the ids of two students to be compared.
form = cgi.FieldStorage ()

sidl = form.getfirst('sidl")

sid2 = form.getfirst('sid2"'")

print ('<h3>Two students</h3>")

print ("""

<table border='1"'>
<tr><th>Id</th><th>Student</th><th>Major</th>
<th>advisor name</th><th># classes enrolled</th>

</tr>
lll)
SQL
queryzlll
SELECT s.stuld AS sid,

CONCAT (s.fName, ' ',s.lName) AS name,

IFNULL(s.major, 'No major') AS major,

IFNULL (CONCAT (f.fname, ' ', f.lname), 'No advisor') AS advisor,

COUNT (e.classId) as numClasses
FROM student AS s LEFT JOIN enroll e ON (s.stuld = e.stuld)
LEFT JOIN faculty AS f ON (s.advisor = f.facId)
WHERE (s.stuld = %s OR s.stuld = %s)
GROUP BY sid, name, major, advisor;
T
cursor.execute (query, (str(sidl), str(sid2)))
for (sid, name, major, advisor, n_classes) in cursor:
print (' <tr><td>' + str(sid) +
'</td><td>"' + name + '</td><td>' +
major + '</td><td>' + str(advisor) + '</td><td>' +
str(n_classes) + '</td></tr>")

(6) For example:

db.student.find(

{ "Sand": [
{ "lname": {"$in": ["Hawk", "Zico", "Johnson"]}},
{ "ach": {"S$lte": 35}} 1 },
{ "stuId": 1, "major":1, "minor": 1,
"student": {"Sconcat": ["S$Sfname", " ", "Slname"]},
"ach credits": "$ach", " id": 0 }

)
// or simply

db.student.find(

{ "lname": {"$in": ["Hawk", "Zico", "Johnson"]},
"ach": {"$lte": 35} 1},
{ "stuId": 1, "major":1l, "minor": 1,
"student": {"$concat": ["S$fname", " ", "Slname"]},
"ach credits": "Sach", " id": 0 }

(7) (a) The two CK: Aand E.

This is because fact [2] indicates that C and D are not in any CK. Fact [3] indicates that B cannot be in
any CK since D -> B (If BE is a CK, DE is also a CK, for example).

(i]

F1: Tutorld -> TutorEMail
F2: Studentld -> StudentEMail

F3: Tutorld, Studentld, Subjectld -> StartDate

[ii] [1] Tutorld, Studentld, Subjectld

[iii] Highest NF: 1NF as F1 and F2 violates 2NF.

