
DASC 5333 Database Systems for Data Science
Fall 2024

Section 1 Suggested Solution to Final Examination

[1] (a) For example:

SELECT DISTINCT s.stuId,

 CONCAT(s.fname, ' ', s.lname) AS student,

 COUNT(c.classId) AS `# enrolled Fall 2019 classes`

FROM student AS s LEFT JOIN enroll AS e ON (s.stuId = e.stuId)

 LEFT JOIN class AS c ON (e.classId = c.classId AND c.semester = 'Fall' AND

c.year = 2019)

GROUP BY s.stuId, student;

(b)

SELECT DISTINCT f.facId,

 CONCAT(f.fname, ' ', f.lname) AS faculty,

 COUNT(s.stuId) AS `Number of advisees`

FROM student AS s INNER JOIN faculty AS f ON (s.advisor = f.facId)

GROUP BY f.facId, faculty

HAVING `Number of advisees` > 1;

(c)

WITH t1 AS

(SELECT facId

 FROM faculty AS f INNER JOIN class AS c USING (facId)

 INNER JOIN course AS co USING (CourseId)

 WHERE co.rubric = 'CSCI'

 GROUP BY facId

 HAVING COUNT(c.classId) >= 2)

SELECT f.facId,

 CONCAT(f.fname, ' ', f.lname) AS faculty,

 COUNT(s.stuId) AS `number of advisees`

FROM faculty AS f INNER JOIN t1 USING (facId)

 LEFT JOIN student AS s ON (f.facId = s.advisor)

GROUP BY f.facId, faculty;

(2)
(a) T (b) T (c) T (d) F (e) F

(f) F (g) T (h) F (i) F (j) F

(k) F

(3)

[a] R(A,B,C,D) with {C->AD, AB->D} ; Canonical form: same

Highest NF:1NF ; CK: BC; C->D violates 2NF.

[b] R(A,B,C,D) with {C->AD, D->AC, B->C}; Canonical form: {C->AD, D->C, B->C};

Highest NF: 2NF; CK: [1] B; C->A violates 3NF

[c] R(A,B,C,D) with {C->AD, A->B, AB->C}; Canonical form: {C->AD, A->BC}

Highest NF: BCNF; CK: [1] A. [2] C

(4) For R(A,B,C,D,E) {A->BC, B-AC, CD->E}

(a) Canonical cover: {A->BC, B->A, CD->E}

(b) Candidate Keys: [1] AD, [2] BD; Prime attributes: A, B, D

(c) 1NF, as A->C and CD ->E violate 3NF

(d) R1(A,B,C) {A->BC, B->A } in BCNF, R2(C,D,E) {CD->E} and R3(A,D) {} in BCNF.

(5) For example:

Get HTTP parameters: the ids of two students to be compared.

form = cgi.FieldStorage()

sid1 = form.getfirst('sid1')

sid2 = form.getfirst('sid2')

print('<h3>Two students</h3>')

print('''

<table border='1'>

<tr><th>Id</th><th>Student</th><th>Major</th>

<th>advisor name</th><th># classes enrolled</th>

</tr>

''')

SQL

query = '''

SELECT s.stuId AS sid,

 CONCAT(s.fName, ' ',s.lName) AS name,

 IFNULL(s.major, 'No major') AS major,

 IFNULL(CONCAT(f.fname, ' ', f.lname), 'No advisor') AS advisor,

 COUNT(e.classId) as numClasses

FROM student AS s LEFT JOIN enroll e ON (s.stuId = e.stuId)

 LEFT JOIN faculty AS f ON (s.advisor = f.facId)

WHERE (s.stuId = %s OR s.stuId = %s)

GROUP BY sid, name, major, advisor;

'''

cursor.execute(query, (str(sid1), str(sid2)))

for (sid, name, major, advisor, n_classes) in cursor:

 print(' <tr><td>' + str(sid) +

 '</td><td>' + name + '</td><td>' +

 major + '</td><td>' + str(advisor) + '</td><td>' +

 str(n_classes) + '</td></tr>')

(6) For example:

db.student.find(

 { "$and": [

 { "lname": {"$in": ["Hawk", "Zico", "Johnson"]}},

 { "ach": {"$lte": 35}}] },

 { "stuId": 1, "major":1, "minor": 1,

 "student": {"$concat": ["$fname", " ", "$lname"]},

 "ach credits": "$ach", "_id": 0 }

)

// or simply

db.student.find(

 { "lname": {"$in": ["Hawk", "Zico", "Johnson"]},

 "ach": {"$lte": 35} },

 { "stuId": 1, "major":1, "minor": 1,

 "student": {"$concat": ["$fname", " ", "$lname"]},

 "ach credits": "$ach", "_id": 0 }

))

(7) (a) The two CK: A and E.

This is because fact [2] indicates that C and D are not in any CK. Fact [3] indicates that B cannot be in

any CK since D -> B (If BE is a CK, DE is also a CK, for example).

[i]

F1: TutorId -> TutorEMail

F2: StudentId -> StudentEMail

 F3: TutorId, StudentId, SubjectId -> StartDate

[ii] [1] TutorId, StudentId, SubjectId

[iii] Highest NF: 1NF as F1 and F2 violates 2NF.

