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(1)
True (T) or False (F) 
(a)
An algorithm F is known to be of O(N2), where N is the size of the input. It is possible that F is also O(N).
(b)
If T(n) = 100 * n2 * log n + 10 * n3/2 + 16 , then T(n) is O(n2).
(c)
Java supports pointer arithmetic.
(d)
An array always has a fixed number of elements in any programming language.
(e)
In C++ and Java, a subclass inherits all data members from its superclass.

(2)
Two linked lists, a and b, have reverse contents if and only of they are of the same length and each element of a is equal to the corresponding element of b in reverse order. For example,

isReverseLists((1,2,3,4,5),(5,4,3,2,1)) -> true

isReverseLists((10,20,30,40),(40,30,20,10)) -> true


isReverseLists((1),(1)) -> true


isReverseLists((),()) -> true


isReverseLists((1),(1,2)) -> false

isReverseLists((1,2,3,4,5),(4,5,3,2,1)) -> false


isReverseLists((1,2,3,4,5),(1,2,3,4,5)) -> false

Provide an algorithm isReverseLists(a,b) to check whether a and b have reverse contents. You may assume that you can get an iterator of a list L by calling the method L.iterator(). You can use the methods hasNext() and next() of an iterator.
(3)
Show the output of executing the following Java’s code.

(a)

    int result = 0;

    result = fibonacci(4);   

where fibonacci is defined as:

    public static int fibonacci( int n )

    {       int result;

             if ( n == 1 || n == 2 ) {

                  result = 1;


}

              else {

                   result = fibonacci( n-1 ) + fibonacci( n-2 );

               }

              System.out.print("fibonacci(" + n + "): " + result + ".\n");     

              return result;

     }

(b)

    Deque<Integer> dq = new ArrayDeque<Integer>(4);    

    dq.addFirst(1);     // addFirst: add to the end of a deque

    dq.addFirst(2);

    dq.addLast(3);

    dq.addLast(4);

    while (! dq.isEmpty()) {

        System.out.println("dq: " + dq.pollFirst() + ".");

    }
(4)
Write a Java’s static method (a similiar C++ function is acceptable):
public static Stack<Integer> makeStack(Deque<Integer> dq) 
which will return an integer stack with the same content as the deque dq. For example, executing the following code:

    dq.addFirst(1);     // addFirst: add to the end of a deque

    dq.addFirst(2);

    dq.addFirst(3);

    dq.addFirst(4);  

    Stack<Integer> s = makeStack(dq);

    System.out.println("Stack: ");

    while (!s.isEmpty()) {

        System.out.println(s.pop());

    }

    System.out.println("Deque: ");

    Iterator iter = dq.iterator();

    while (iter.hasNext()) {

        System.out.println(iter.next());

    }

will output the following:

Stack:

1

2

3

4

Deque:

4

3

2

1

(5)
If f(n) = O(n4) and g(n) = O(n3)), prove that f(n) + g(n) is O(n4).
(6)
Consider the implementation of a singly linked int list in Java (you may answer the question in C++ in a similar manner). Provide the definition of the function addAfterValue as described below.
    class IntList

    {   class IntListNode {

            // data members 

            public int value;

            public IntListNode next;

            IntListNode() {}

        }

        private IntListNode head;

        public IntList() {

            this.head = null;

        }

        public IntList(int val) {

            IntListNode temp = new IntListNode();

            temp.value = val;

            temp.next = null;

            head = temp;

        }        

        public void addFirst(int val) {

            IntListNode temp = new IntListNode();

            temp.value = val;

            temp.next = head;

            head = temp;

        }

        public void show() {

            IntListNode temp = this.head;

            System.out.println("Singly linked integer list content:");

            while (temp != null) {

                System.out.println(temp.value);

                temp = temp.next;

            }

        }

        public boolean addAfterValue(int afterVal, int val) {

            …

        }

        …

    }

The method Boolean addAfterValue(int afterVal, int val) inserts the value of val after the first node with a value equal to afterVal. It returns true iff the value afterVal is found in the linked list. For example, executing the code:

    IntList b = new IntList(1);

    b.addFirst(1);

    b.addFirst(2);

    b.addFirst(3);

    b.show();

    b.addAfterValue(1, 5);

    b.show();

will print the following:

Singly linked integer list content:

3

2

1

1

Singly linked integer list content:

3

2

1

5

1

Note that 5 is inserted as node #4, immediately after node #3, which contains the first occurrence of 1.

(7)
Provide the body of the following Java’s recursive function (a similar C++ function is acceptable):

    public static int rangeProduct(int [] a,

                                    int lower,  // lower range

                                    int upper)  // upper range)

The function must be written in a recursive manner. Iterative version is not acceptable. It returns the product of the array elements with indices from lower to upper: a[lower] * a[lower+1] * … * a[upper]. You may assume that there is no error in input parameters. For example, running:

    int[] a = {1, 2, 3, 4, 5, 6, 7, 8};

    System.out.println("Range product of a[0,0]:" + rangeProduct(a,0,0));

    System.out.println("Range product of a[0,3]:" + rangeProduct(a,0,3));

    System.out.println("Range product of a[2,5]:" + rangeProduct(a,2,5));

will output the following:

Range product of a[0,0]:1

Range product of a[0,3]:24

Range product of a[2,5]:360
