CSCI 3333

Data Structures

Spring 2013
Mid-Term Examination

Last Name: _________________ First Name: _______________ Student Id: _______

Time allowed: one hour and 45 minutes. Total score: 70 points (10 points for each question.)
This is a closed book examination.

Answer all questions. Turn in both question and answer sheets. Write your name and student id in the first page of your answer sheets, and your name in every page.

Plan your time well.

Academic honesty policy will be followed strictly. Cheating will be pursued vigorously and will result in a failing grade of D or below, a permanent academic record and possibly other more serious penalty!

	I hereby pledge that I will stay truth to UHCL’s Honor Code.

Signature: Date:

(1)
True (T) or False (F)
(a)
An algorithm F is known to be of O(N2), where N is the size of the input. It is possible that F is also O(N).
(b)
If T(n) = 100 * n2 * log n + 10 * n3/2 + 16 , then T(n) is O(n2).
(c)
Java supports pointer arithmetic.
(d)
An array always has a fixed number of elements in any programming language.
(e)
In C++ and Java, a subclass inherits all data members from its superclass.

(2)
Two linked lists, a and b, have reverse contents if and only of they are of the same length and each element of a is equal to the corresponding element of b in reverse order. For example,

isReverseLists((1,2,3,4,5),(5,4,3,2,1)) -> true

isReverseLists((10,20,30,40),(40,30,20,10)) -> true

isReverseLists((1),(1)) -> true

isReverseLists((),()) -> true

isReverseLists((1),(1,2)) -> false

isReverseLists((1,2,3,4,5),(4,5,3,2,1)) -> false

isReverseLists((1,2,3,4,5),(1,2,3,4,5)) -> false

Provide an algorithm isReverseLists(a,b) to check whether a and b have reverse contents. You may assume that you can get an iterator of a list L by calling the method L.iterator(). You can use the methods hasNext() and next() of an iterator.
(3)
Show the output of executing the following Java’s code.

(a)

 int result = 0;

 result = fibonacci(4);

where fibonacci is defined as:

 public static int fibonacci(int n)

 { int result;

 if (n == 1 || n == 2) {

 result = 1;

}

 else {

 result = fibonacci(n-1) + fibonacci(n-2);

 }

 System.out.print("fibonacci(" + n + "): " + result + ".\n");

 return result;

 }

(b)

 Deque<Integer> dq = new ArrayDeque<Integer>(4);

 dq.addFirst(1); // addFirst: add to the end of a deque

 dq.addFirst(2);

 dq.addLast(3);

 dq.addLast(4);

 while (! dq.isEmpty()) {

 System.out.println("dq: " + dq.pollFirst() + ".");

 }
(4)
Write a Java’s static method (a similiar C++ function is acceptable):
public static Stack<Integer> makeStack(Deque<Integer> dq)
which will return an integer stack with the same content as the deque dq. For example, executing the following code:

 dq.addFirst(1); // addFirst: add to the end of a deque

 dq.addFirst(2);

 dq.addFirst(3);

 dq.addFirst(4);

 Stack<Integer> s = makeStack(dq);

 System.out.println("Stack: ");

 while (!s.isEmpty()) {

 System.out.println(s.pop());

 }

 System.out.println("Deque: ");

 Iterator iter = dq.iterator();

 while (iter.hasNext()) {

 System.out.println(iter.next());

 }

will output the following:

Stack:

1

2

3

4

Deque:

4

3

2

1

(5)
If f(n) = O(n4) and g(n) = O(n3)), prove that f(n) + g(n) is O(n4).
(6)
Consider the implementation of a singly linked int list in Java (you may answer the question in C++ in a similar manner). Provide the definition of the function addAfterValue as described below.
 class IntList

 { class IntListNode {

 // data members

 public int value;

 public IntListNode next;

 IntListNode() {}

 }

 private IntListNode head;

 public IntList() {

 this.head = null;

 }

 public IntList(int val) {

 IntListNode temp = new IntListNode();

 temp.value = val;

 temp.next = null;

 head = temp;

 }

 public void addFirst(int val) {

 IntListNode temp = new IntListNode();

 temp.value = val;

 temp.next = head;

 head = temp;

 }

 public void show() {

 IntListNode temp = this.head;

 System.out.println("Singly linked integer list content:");

 while (temp != null) {

 System.out.println(temp.value);

 temp = temp.next;

 }

 }

 public boolean addAfterValue(int afterVal, int val) {

 …

 }

 …

 }

The method Boolean addAfterValue(int afterVal, int val) inserts the value of val after the first node with a value equal to afterVal. It returns true iff the value afterVal is found in the linked list. For example, executing the code:

 IntList b = new IntList(1);

 b.addFirst(1);

 b.addFirst(2);

 b.addFirst(3);

 b.show();

 b.addAfterValue(1, 5);

 b.show();

will print the following:

Singly linked integer list content:

3

2

1

1

Singly linked integer list content:

3

2

1

5

1

Note that 5 is inserted as node #4, immediately after node #3, which contains the first occurrence of 1.

(7)
Provide the body of the following Java’s recursive function (a similar C++ function is acceptable):

 public static int rangeProduct(int [] a,

 int lower, // lower range

 int upper) // upper range)

The function must be written in a recursive manner. Iterative version is not acceptable. It returns the product of the array elements with indices from lower to upper: a[lower] * a[lower+1] * … * a[upper]. You may assume that there is no error in input parameters. For example, running:

 int[] a = {1, 2, 3, 4, 5, 6, 7, 8};

 System.out.println("Range product of a[0,0]:" + rangeProduct(a,0,0));

 System.out.println("Range product of a[0,3]:" + rangeProduct(a,0,3));

 System.out.println("Range product of a[2,5]:" + rangeProduct(a,2,5));

will output the following:

Range product of a[0,0]:1

Range product of a[0,3]:24

Range product of a[2,5]:360
