

CSCI 4333 Design of Database Systems
Spring 2025

Section 1 Suggested Solution to Final Examination

[1] (a) For example:

SELECT DISTINCT d.deptCode,

 d.deptName AS department,

 COUNT(s.stuId) AS `# enrolled majors`

FROM department AS d LEFT JOIN student AS s ON (d.deptCode = s.major)

GROUP BY d.deptCode, department;

(b)

SELECT DISTINCT f.facId,

 CONCAT(f.fname, ' ', f.lname) AS faculty,

 COUNT(s.stuId) AS `Number of advisees`

FROM student AS s INNER JOIN faculty AS f ON (s.advisor = f.facId)

 INNER JOIN department AS d ON (f.deptCode = d.deptCode)

WHERE d.schoolCode = 'CSE'

GROUP BY f.facId, faculty

HAVING `Number of advisees` > 1;

(c)

WITH t1 AS

(SELECT facId

 FROM faculty AS f INNER JOIN class AS c USING (facId)

 INNER JOIN course AS co USING (CourseId)

 WHERE co.rubric = 'CSCI'

 GROUP BY facId

 HAVING COUNT(c.classId) >= 2)

SELECT f.facId,

 CONCAT(f.fname, ' ', f.lname) AS faculty,

 COUNT(s.stuId) AS `number of advisees`

FROM faculty AS f INNER JOIN t1 USING (facId)

 LEFT JOIN student AS s ON (f.facId = s.advisor)

GROUP BY f.facId, faculty;

(2)
(a) F (b) T (c) F (d) F (e) F

(f) F (g) T (h) T (i) F (j) F

(k) F

(3)

[a] R(A,B,C,D) with {B->D, C->D, D->A}; Canonical cover: same

 CK: BC;

Highest NF: 1NF; B->D violates 2NF.

[b] R(A,B,C,D) with {B->AC, A->BD}; Canonical cover: same

 CK: [1] A. [2] B

Highest NF: BCNF

[c] R(A,B,C,D) with {B->AC, A->BD, C->D}; Canonical cove: {B->AC, A->B, C->D}

 CK: [1] A. [2] B;

Highest NF: 2NF; C -> D violates 3NF.

(4) R(A,B,C,D,E) {A->B, AB->CD, D->AC, C->E}

[a] Canonical Cover: {A->BCD, D->A, C->E}

[b] CK: [1] A, [2] D

[c] Highest NF: 2NF; as C->E violates 3NF.

[d] R1(A,B,C,D) { A->BCD, D->A}

 R2(C,E) {C->E}

(5) For example:

Get HTTP parameters: the ids of two students to be compared.

form = cgi.FieldStorage()

sid1 = form.getfirst('sid1')

sid2 = form.getfirst('sid2')

print('<h3>Two students</h3>')

print('''

<table border='1'>

<tr><th>Id</th><th>Student</th><th>Major department</th>

<th>advisor facId</th><th># classes enrolled</th>

</tr>

''')

SQL

query = '''

SELECT s.stuId AS sid,

 CONCAT(s.fName, ' ',s.lName) AS name,

 IFNULL(d.deptName, 'No major') AS major,

 IFNULL(s.advisor, 'No advisor') AS advisor,

 COUNT(e.classId) as numClasses

FROM student AS s LEFT JOIN enroll e ON (s.stuId = e.stuId)

 LEFT JOIN department AS d ON (s.major = d.deptCode)

WHERE (s.stuId = %s OR s.stuId = %s)

GROUP BY sid, name, major, advisor;

'''

cursor.execute(query, (str(sid1), str(sid2)))

for (sid, name, major, advisor, n_classes) in cursor:

 print(' <tr><td>' + str(sid) +

 '</td><td>' + name + '</td><td>' +

 major + '</td><td>' + str(advisor) + '</td><td>' +

 str(n_classes) + '</td></tr>')

(6) For example:

use toyu;

db.student.find(

 { "$and": [

 { "$or": [{"major": "CINF"}, {"minor": "CINF"}]},

 { "ach": {"$gte": 15}}] },

 { "stuId": 1, "major":1, "minor": 1,

 "student": {"$concat": ["$fname", " ", "$lname"]},

 "ach credits": "$ach", "_id": 0 }

)

// or simply:

db.student.find(

 { "$or": [{"major": "CINF"}, {"minor": "CINF"}],

 "ach": {"$gte": 15} },

 { "stuId": 1, "major":1, "minor": 1,

 "student": {"$concat": ["$fname", " ", "$lname"]},

 "ach credits": "$ach", "_id": 0 }

)

(7) (a) The second CK is BC.

Given facts [1] and [3], the potential second CK may be B, C or BC. Only having BC as the second CK

can produce 20 SK.

(b)

[i]

F1: TutorId -> TutorEMail

F2: StudentId -> StudentEMail

 F3: SubjectId -> SubjectName

 F4: SubjectName -> SubjectId

[ii]

[1] TutorId, StudentId, SubjectId

[2] TutorId, StudentId, SubjectName

[iii] Highest NF: 1NF as F1 and F2 violates 2NF.

