DASC 5333
2/4/2025
Self Annotation
The Relational Model
by K. Yue
1. Introduction
1.1 Data Model
· There are many data models used by database systems.
· The data models of database systems define how data is organized, structured, connected, processed, and queried in the databases.
· It is important to recognize the basic data structures used by these models.
· Examples:
1. Relational model: set-theoretic relation/table
2. Excel: table, and to be more exact, a two-dimensional array
3. Object-oriented model: directed graphs
4. XML: trees with many different types of nodes, plus sets of attributes.
5. Cassandra: columnar or wild column model
6. MongoDB: document model
7. Neo4J: graph model
1.2 The Relational Model: an introduction
· The basic relational data model in layman terms:
· A database is composed of a collection of tables (relations).
· E.g. toyu contains 8 tables.
· A table contains many rows (tuples) and columns (attributes/fields).
[image: A screenshot of a computer

Description automatically generated]
· Each row contains many column values.
· Every row of a table has the same set of columns. (structured data)
[image: A screenshot of a computer

Description automatically generated]
· Values of the same column have the same data type.
· Keys are sets of columns.
· A candidate key of a table is a minimal unique identifier of a row in the table.
E.g. For departments, two simple candidate keys:
1. deptCode (Primay key)
2. deptName (Alternate key)

CREATE TABLE IF NOT EXISTS Department (
 deptCode CHAR(4) NOT NULL,
 deptName VARCHAR(30) NOT NULL,
 schoolCode CHAR(3) NULL,
 numStaff TINYINT NULL,
 CONSTRAINT Department_deptCode_pk PRIMARY KEY (deptCode),
	-- alternate keys: [1] deptName	
 CONSTRAINT Department_name_ck UNIQUE (deptName),
 CONSTRAINT Department_schoolCode_fk FOREIGN KEY (schoolCode)
 REFERENCES School(schoolCode)
);

[image: A screenshot of a computer

Description automatically generated]
Student: CK: (1) stuId
Enroll table:
Primary key (PK)/CK: (1) {stuId, classId}: {} a set of two attributes/columns; minimal + unique; composite key (more than one attribute)
CREATE TABLE IF NOT EXISTS Enroll(
 stuId INT NOT NULL,
 classId INT NOT NULL,
 grade VARCHAR(2) NULL,
 n_alerts INT NULL,
 CONSTRAINT Enroll_classId_stuId_pk PRIMARY KEY (classId, stuId),
 CONSTRAINT Enroll_classNumber_fk FOREIGN KEY (classId)
 REFERENCES Class(classId) ON DELETE CASCADE,
 CONSTRAINT Enroll_stuId_fk FOREIGN KEY (stuId)
 REFERENCES Student (stuId) ON DELETE CASCADE,
 CONSTRAINT Enroll_grade_fk FOREIGN KEY (grade)
 REFERENCES Grade (grade) ON DELETE CASCADE
);

[image: A screenshot of a computer

Description automatically generated]
· A primary key is a selected candidate key (for storing the table).
· Alternative/secondary keys are candidate keys not selected as the primary key.

· A foreign key of a relation references a primary key of another relation (known as the parent or referenced table).

Join tables: equality of common attributes: (FK = PK of the reference tables)
Foreign keys:

1. Student(advisor) references Faculty(facId)
2. Student(major) references Department(deptCode)
3. Student(minor) references Department(deptCode)
CREATE TABLE IF NOT EXISTS Student (
 stuId INT NOT NULL,
 fname VARCHAR(30) NOT NULL,
 lname VARCHAR(30) NOT NULL,
 major CHAR(4) NULL,
 minor CHAR(4) NULL,
	-- ach: accumulated credit hours, including transferred credits.
 ach 	 INTEGER(3) UNSIGNED NULL DEFAULT 0,
 advisor INT NULL,
 CONSTRAINT Student_stuId_pk PRIMARY KEY(stuId),
	-- an artificial example of a CHECK constraint.
 CONSTRAINT Student_ach_cc CHECK ((ach>=0) AND (ach < 250)),
 CONSTRAINT Student_major_fk FOREIGN KEY (major)
 REFERENCES Department(deptCode) ON DELETE CASCADE,
 CONSTRAINT Student_minor_fk FOREIGN KEY (minor)
 REFERENCES Department(deptCode) ON DELETE CASCADE,
 CONSTRAINT Student_advisor_fk FOREIGN KEY (advisor)
 REFERENCES Faculty(facId)
);
Q: StuId is the primary key of the database toyu?
No. Wrong question.
Right Q: StuId is the primary key of the table enroll? No, not unique
PK of enroll: {StuId, classId}
Q: {deptCode, SchoolCode} is a CK for department? False, not minimal. SchoolCode is not needed in the identifier.

4. Faculty(deptCode) references Department(deptCode)
5. Department(schoolCode) references School(schoolCode)
6. Enroll(stuId) references Student(stuId)
7. Enroll(classId) references Class(classId)
8. Enroll(grade) references Grade(grade)
9. Class(courseId) references Course(courseId)
10. Class(facId) references Faculty(facId)
11. Course(Rubric) references Department(deptCode)
More theoretically:
· The (theoretical) relational model is based on the concept of a relation.
· It is a set-theoretic model: the definitions are based on mathematical sets.
· If you are not familar with set theory, read about it. This is a basic, short, good, and good-enough introduction: https://www.ucl.ac.uk/~ucahmto/0005_2021/Ch2.S1.html (note that in the set builder form, the author used ":" to represent "such that". We usually use "|" instead.)
· Note that practical DBMS do not implement the pure relational model.
· In the theoretical relational model:
1. An attribute (column/field) is a name.
2. A domain is a set of values an attribute can take.
1. It is the set of values of the data type of the attribute.
2. The value of an attribute should be atomic (cannot be divided into smaller components with individual meanings):
1. If all attributes of a relation are atomic, the relation is said to be in First Normal Form.
3. Null may or may not be an acceptable value for an attribute. It depends on problem requirements.
3. A relation schema, R, is a set of attributes A1, A2,…,An with their domains D1, D2,…, Dn.
4. A tuple (row) is a set of mapping of a set of attributes to a set of values: Ai -> di where di ∈ Di, for i = 1 to n (∈: belongs to)
5. A relation (instance) is a set of tuples.
6. The degree (or arity) of a relation is the number of attributes in its schema.
· Some advantages of the relational model and relational DBMS (as compared to other databases):
1. Strong mathematical foundation
2. Simple
3. Strong design theory
4. Strong support of data integrity and consistency
5. Strong support of transactions
6. Strong industrial support and community
7. High popularity
· Some disadvantages of the relational model and relational DBMS:
1. The data model may not match the problem requirements well.
2. Impedance mismatch with object-oriented models.
3. Do not scale well.
4. Structured data may be too restrictive for specific problems.
1.3 Toyu Example
Toyu: A drastically simplified university

SQL statement: SELECT * FROM class;
Select every column from the table class.
MariaDB [toyu]> SELECT * FROM class;
+---------+----------+----------+------+-------+------+
| classId | courseId | semester | year | facId | room |
+---------+----------+----------+------+-------+------+
10000	2000	Fall	2019	1011	D241
10001	2001	Fall	2019	1011	D242
10002	2002	Fall	2019	1012	D136
10003	2020	Fall	2019	1014	D241
10004	2021	Fall	2019	1014	D241
10005	2040	Fall	2019	1015	D237
10006	2041	Fall	2019	1019	D217
10007	2060	Fall	2019	1020	B101
10008	2080	Fall	2019	1018	D241
11000	2000	Spring	2020	1011	D241
11001	2001	Spring	2020	1012	D242
11002	2002	Spring	2020	1013	D136
11003	2020	Spring	2020	1016	D217
11004	2061	Spring	2020	1018	B101
+---------+----------+----------+------+-------+------+
14 rows in set (0.005 sec)
A tuple/row: {classId: 10004, courseId: 2021, semester: 'Fall', year: 2019, facId: 1014, room: 'D241'}. Note that it is a set of mappings from attribute names to attribute values.
It can also be represented as:
{classId: 10004, facId: 1014, room: 'D241', semester: 'Fall', year: 2019, courseId: 2021}
or
{10004, 2021, 'Fall', 2019, 1014, 'D241'} if the attribute names are assumed in be in the right order.
or using a more computer science-style notation.
(10004, 2021, 'Fall', 2019, 1014, 'D241')
Identify some examples of the database terms in the class table above as much as possible.
· Some important properties of a relation:
· There is no duplicate tuple.
1. Because a relation is a set.
2. Consequence: the relational model does not support 'object identity' directly.
· The relational model is known to be 'value-oriented':
1. A row is a set of attribute values.
2. Two rows with the same values in all attributes are the same row.
3. Cannot store two duplicate rows in a table.
· The terms tables and relations are not exactly the same. "Table" is a more generic term.
· Tuples within a relation are unordered.
· Changing the order of displaying the tuples does not change (the meaning of) the relation.
· Attributes within a relation schema are unordered.
· Changing the order of the attributes within a relation schema does not change the information stored in the relation.
Example:
+---------+----------+----------+------+-------+------+
| classId | courseId | semester | year | facId | room |
+---------+----------+----------+------+-------+------+
| 10000 | 2000 | Fall | 2019 | 1011 | D241 |
| 10001 | 2001 | Fall | 2019 | 1011 | D242 |
| 10002 | 2002 | Fall | 2019 | 1012 | D136 |
| 10003 | 2020 | Fall | 2019 | 1014 | D241 |
| 10004 | 2021 | Fall | 2019 | 1014 | D241 |
| 10005 | 2040 | Fall | 2019 | 1015 | D237 |
| 10006 | 2041 | Fall | 2019 | 1019 | D217 |
| 10007 | 2060 | Fall | 2019 | 1020 | B101 |
| 10008 | 2080 | Fall | 2019 | 1018 | D241 |
| 11000 | 2000 | Spring | 2020 | 1011 | D241 |
| 11001 | 2001 | Spring | 2020 | 1013 | D242 |
| 11002 | 2002 | Spring | 2020 | 1013 | D136 |
| 11003 | 2020 | Spring | 2020 | 1016 | D217 |
| 11004 | 2061 | Spring | 2020 | 1018 | B101 |
+---------+----------+----------+------+-------+------+
and
+---------+------+----------+----------+------+-------+
| classId | year | semester | courseId | room | facId |
+---------+------+----------+----------+------+-------+
| 11004 | 2020 | Spring | 2061 | B101 | 1018 |
| 10007 | 2019 | Fall | 2060 | B101 | 1020 |
| 10002 | 2019 | Fall | 2002 | D136 | 1012 |
| 11002 | 2020 | Spring | 2002 | D136 | 1013 |
| 11003 | 2020 | Spring | 2020 | D217 | 1016 |
| 10006 | 2019 | Fall | 2041 | D217 | 1019 |
| 10005 | 2019 | Fall | 2040 | D237 | 1015 |
| 10000 | 2019 | Fall | 2000 | D241 | 1011 |
| 11000 | 2020 | Spring | 2000 | D241 | 1011 |
| 10003 | 2019 | Fall | 2020 | D241 | 1014 |
| 10004 | 2019 | Fall | 2021 | D241 | 1014 |
| 10008 | 2019 | Fall | 2080 | D241 | 1018 |
| 10001 | 2019 | Fall | 2001 | D242 | 1011 |
| 11001 | 2020 | Spring | 2001 | D242 | 1013 |
+---------+------+----------+----------+------+-------+

store the same information.
The second table can be obtained in SQL by:
SELECT classId, year, semester, courseId, room, facId
FROM class
ORDER BY room, facId;
2. Keys
· A set of attributes K is a candidate key (CK) of a relation R if it minimally identifies a tuple at any time:
1. Uniqueness: No two tuples (rows) of R have the same value of K.
2. Minimality: No proper subset of K has the uniqueness property.
· Enroll table: CK: (1) {stuId, classId}: composite key
· A candidate key is a property of the semantic (meaning) of a relation.
· In other words, being a candidate key is the result of the requirements of an application.
· A relation always has at least one candidate keys. Why?
1. Because a relation instance r is a set of rows, no two rows will have the exact same values.
2. Thus, the relation schema R by itself satisfies the uniqueness property.
3. R or one of its proper subsets will satisfy the minimal property as extraneous attributes are removed.
· A set of attributes may be a candidate key of a relation R but not a candidate key of another relation S.
· For any relation instance, the candidate key of a tuple must have an unique value.
· A primary key is a selected candidate key for a relation in the DBMS. It is used for practical purpose (of how the relation is stored physically) and does not have a special meaning in the theory of the relational model.
· Some criteria for selecting a primary key:
1. Stable and relative immutable.
2. Simple: contains one attribute
3. Concise: short storage space and faster comparison.
· An alternate/secondary key is a candidate key that is not the primary key.
[image: A screenshot of a computer

Description automatically generated]
Department: 2 CK
· deptCode: primary key
· deptName: secondary key/alternative key
· Questions people may ask:
1. What is the key of the database toyu? Wrong question.
2. What is the primary key of the database toyu? more precise but still wrong question.
3. What is the key of the school table of the toyu database? good question but a bit ambiguous. Answer: schoolCode.
4. What is the primary key of the school table of the toyu database? schoolCode.
5. What are the candidate keys of the school table of the toyu database? [1] schoolCode, [2] schoolName.
6. What are the secondary/alternative keys of the school table of the toyu database? schoolName.
Example:
Consider:
MariaDB [toyu]> SELECT * FROM faculty;
+-------+----------+----------+----------+---------------------+
| facId | fname | lname | deptCode | rank |
+-------+----------+----------+----------+---------------------+
| 1011 | Paul | Smith | CSCI | Professor |
| 1012 | Mary | Tran | CSCI | Associate Professor |
| 1013 | David | Love | CSCI | NULL |
| 1014 | Sharon | Mannes | CSCI | Assistant Professor |
| 1015 | Daniel | Kim | CINF | Professor |
| 1016 | Andrew | Byre | CINF | Associate Professor |
| 1017 | Deborah | Gump | ITEC | Professor |
| 1018 | Art | Allister | ARTS | Assistant Professor |
| 1019 | Benjamin | Yu | ITEC | Lecturer |
| 1020 | Katrina | Bajaj | ENGL | Lecturer |
| 1021 | Jorginlo | Neymar | ACCT | Assistant Professor |
+-------+----------+----------+----------+---------------------+
11 rows in set (0.001 sec)

MariaDB [toyu]> SELECT * FROM department;
+----------+------------------------------+------------+----------+
| deptCode | deptName | schoolCode | numStaff |
+----------+------------------------------+------------+----------+
ACCT	Accounting	BUS	10
ARTS	Arts	HSH	5
CINF	Computer Information Systems	CSE	5
CSCI	Computer Science	CSE	12
ENGL	English	HSH	12
ITEC	Information Technology	CSE	4
MATH	Mathematics	CSE	7
+----------+------------------------------+------------+----------+
7 rows in set (0.001 sec)
· deptCode is a candidate key of the relation department. Assumptions made:
1. Each tuple in the department relation represents an unique department.
2. Each department has an unique code. No two departments can have the same code.
· deptName is also a candidate key of the relation department. Assumptions made:
1. Each tuple in the department relation represents an unique department.
2. Each department has an unique name. No two departments can have the same name.
· deptCode is selected as the primary key of the relation department since it is concise and more stable.
· deptCode is not a candidate key of the relation faculty. Assumptions made:
1. Each tuple in the faculty relation represents a faculty member.
2. Each faculty serves only one department.
3. A department may have many faculty members.
Consider the tables student and enroll:
· stuid is a candidate key of the relation student. Assumptions made:
1. Each tuple in the student relation represents an unique student.
2. Each student has an unique student id, or no two students can have the same stuid.
· stuid is not a candidate key of the relation enroll. Assumptions made:
1. Each tuple in the Enroll relation represents the enrollment of a student in a class, ending up with a grade.
2. A student can take many classes.
3. A class can have many students.
· Note again that a candidate key is a property of a relation.
2.1 More about keys:
· A key is simple if it has only one attribute.
· A key is a composite key if it has more than one attributes.
· A key is a compound key if it is a composite and each attribute in the key is a foreign key.
· Every relation has at least one candidate key.
· A foreign key of a relation is a set of attributes that is a candidate key in another relation. The other relation is sometimes called the parent (or referenced) table of the foreign key.
· Foreign keys:

1. Student(advisor) references Faculty(facId)
2. Student(major) references Department(deptCode)
3. Student(minor) references Department(deptCode)
4. Faculty(deptCode) references Department(deptCode)
5. Department(schoolCode) references School(schoolCode)
6. Enroll(stuId) references Student(stuId)
7. Enroll(classId) references Class(classId)
8. Enroll(grade) references Grade(grade)
9. Class(courseId) references Course(courseId)
10. Class(facId) references Faculty(facId)
11. Course(Rubric) references Department(deptCode)A foreign key may or may not have null value. It depends on the problem requirements.
· For uses in normalization theory:
· An attribute that appears in one or more candidate keys is a prime attribute (or key attribute).
· An attribute that does not appears in any candidate key is a non-prime (non-key) attribute.
· A superkey of a relation is a set of attributes that uniquely identify a row (uniqueness). It may not be minimal. (A Superkey may have extraneous attributes not needed for unique identification.)
Consider the example above. The attribute deptCode is a foreign key in the relation faculty, referencing department(deptCode)
· A deptCode in the department relation must be referring to a department in the database, identified by deptCode in the relation department (referential integrity).
· In relational DB, rows (data) from different tables are linked together using foreign keys.
· A foreign key of a child table links to a primary key of the parent table.
Likewise, stuid is a foreign key in the relation Enroll: stuid references student(stuid)
Note that the student table has three foreign keys.
Example: In the department table in toyu:
Department(deptCode, deptName, schoolCode, numStaff)
Candidate keys:
1. deptCode (i.e. {deptCode})
2. deptName
Primary key: deptCode
Alternate key:
1. deptName
Prime attributes:
1. deptCode
2. deptName
Non-prime attributes:
1. schoolCode
2. numStaff
Superkeys:
1. deptCode
2. deptName
3. deptCode, deptName (i.e. {deptCode, deptName})
4. deptCode, schoolCode
5. deptCode, numStaff
6. deptCode, deptName, SchoolCode
7. deptCode, deptName, numStaff
8. deptCode, SchoolCode, numStaff
9. deptCode, deptName, SchoolCode, numStaff
10. deptName, SchoolCode
11. deptName, numStaff
12. deptName, SchoolCode, numStaff
Example:
Study the list of all foreign keys in toyu:
· The INNER JOIN operation can be used to join tables through foreign keys.
Example:
-- INNER JOIN
SELECT * FROM faculty;
SELECT * FROM department;
SELECT s.fname, s.lname, s.advisor, f.`rank`
FROM student AS s INNER JOIN faculty AS f
 ON (s.advisor = f.facId);

Result:
MariaDB [toyu]> SELECT * FROM faculty;
+-------+----------+----------+----------+---------------------+
| facId | fname | lname | deptCode | rank |
+-------+----------+----------+----------+---------------------+
| 1011 | Paul | Smith | CSCI | Professor |
| 1012 | Mary | Tran | CSCI | Associate Professor |
| 1013 | David | Love | CSCI | NULL |
| 1014 | Sharon | Mannes | CSCI | Assistant Professor |
| 1015 | Daniel | Kim | CINF | Professor |
| 1016 | Andrew | Byre | CINF | Associate Professor |
| 1017 | Deborah | Gump | ITEC | Professor |
| 1018 | Art | Allister | ARTS | Assistant Professor |
| 1019 | Benjamin | Yu | ITEC | Lecturer |
| 1020 | Katrina | Bajaj | ENGL | Lecturer |
| 1021 | Jorginlo | Neymar | ACCT | Assistant Professor |
+-------+----------+----------+----------+---------------------+
11 rows in set (0.000 sec)

MariaDB [toyu]> SELECT * FROM department;
+----------+------------------------------+------------+----------+
| deptCode | deptName | schoolCode | numStaff |
+----------+------------------------------+------------+----------+
ACCT	Accounting	BUS	10
ARTS	Arts	HSH	5
CINF	Computer Information Systems	CSE	5
CSCI	Computer Science	CSE	12
ENGL	English	HSH	12
ITEC	Information Technology	CSE	4
MATH	Mathematics	CSE	7
+----------+------------------------------+------------+----------+
7 rows in set (0.000 sec)

MariaDB [toyu]> SELECT s.fname, s.lname, s.advisor, f.`rank`
 -> FROM student AS s INNER JOIN faculty AS f
 -> ON (s.advisor = f.facId);
+---------+----------+---------+---------------------+
| fname | lname | advisor | rank |
+---------+----------+---------+---------------------+
Tony	Hawk	1011	Professor
Mary	Hawk	1011	Professor
David	Hawk	1012	Associate Professor
Larry	Johnson	1017	Professor
Linda	Johnson	1015	Professor
Lillian	Johnson	1016	Associate Professor
Linda	King	1018	Assistant Professor
Cathy	Johanson	1018	Assistant Professor
+---------+----------+---------+---------------------+
8 rows in set (0.000 sec)
Classroom Exercise:
(1) Give a realistic example of a relation with two candidate keys. State the assumptions you have made.
(2) A relation R has an arity of 4. What are the possible minimum and maximum number of superkeys of R? What are the possible minimum and maximum number of candidate keys of R?
What about the general case?

Null Values in SQL DB
by K. Yue
1. Null values
· Generally used for representing missing information.
· SQL DBMS provide a method to test whether a value is null or not (IS NULL and IS NOT NULL).
Example:
-- students with no advisor
SELECT s.*
FROM student AS s
WHERE s.advisor IS NULL;

-- Show all students with a declared minor.
SELECT DISTINCT s.*
FROM student AS s
WHERE s.minor IS NOT NULL;

-- Show enrollment without a n_alerts value.
SELECT e.*
FROM enroll AS e
WHERE e.n_alerts IS NULL;

Result:
MariaDB [toyu]> -- students with no advisor
MariaDB [toyu]> SELECT s.*
 -> FROM student AS s
 -> WHERE s.advisor IS NULL;
+--------+-----------+-------+-------+-------+------+---------+
| stuId | fname | lname | major | minor | ach | advisor |
+--------+-----------+-------+-------+-------+------+---------+
100003	Catherine	Lim	ITEC	CINF	20	NULL
100007	Ben	Zico	NULL	NULL	16	NULL
100008	Bill	Ching	ARTS	NULL	90	NULL
+--------+-----------+-------+-------+-------+------+---------+
3 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- Show all students with a declared minor.
MariaDB [toyu]> SELECT DISTINCT s.*
 -> FROM student AS s
 -> WHERE s.minor IS NOT NULL;
+--------+-----------+---------+-------+-------+------+---------+
| stuId | fname | lname | major | minor | ach | advisor |
+--------+-----------+---------+-------+-------+------+---------+
100000	Tony	Hawk	CSCI	CINF	40	1011
100001	Mary	Hawk	CSCI	CINF	35	1011
100002	David	Hawk	CSCI	ITEC	66	1012
100003	Catherine	Lim	ITEC	CINF	20	NULL
100005	Linda	Johnson	CINF	ENGL	13	1015
100006	Lillian	Johnson	CINF	ITEC	18	1016
100009	Linda	King	ARTS	CSCI	125	1018
+--------+-----------+---------+-------+-------+------+---------+
7 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- Show enrollment without a n_alerts value.
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts IS NULL;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100001	10000	NULL	NULL
100005	10003	NULL	NULL
100004	10004	B+	NULL
100006	10004	C+	NULL
100006	10005	A	NULL
100005	10006	B+	NULL
+--------+---------+-------+----------+
6 rows in set (0.000 sec)
2. Null and Boolean Expressions
1. MySQL does not have a Boolean data type. A Boolean value is converted to TINYINT: 0 as FALSE, otherwise TRUE.
2. If a Boolean value is expected, null is implicitly type converted to FALSE.
3. However, NULL is a special value different with 0 or empty string.
4. Comparing null to other values return false.
Example:
-- 1. Boolean values are TINYINT. FALSE is 0.
SELECT FALSE,
 TRUE;

SELECT *
FROM student
WHERE 0;

SELECT *
FROM student
WHERE 1;

SELECT *
FROM student
WHERE 2697;

SELECT *
FROM student
WHERE '0';
-- ‘0’: string -> 0” tinyint (Boolean): implicit type conversion: convenient; inappropriate

SELECT *
FROM student
WHERE '145';

-- warning: '' cannot be converted to a number.
-- "Warning 1292 Truncated incorrect DOUBLE value: ''"
SELECT *
FROM student
WHERE '';

-- warning: '' cannot be converted to a number.
-- "Warning 1292 Truncated incorrect DOUBLE value: ''"
SELECT *
FROM student
WHERE 'Hello world';

SELECT *
FROM student
WHERE 1.49;
Result:
MariaDB [toyu]> SELECT FALSE,
 -> TRUE;
+-------+------+
| FALSE | TRUE |
+-------+------+
| 0 | 1 |
+-------+------+
1 row in set (0.001 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE 0;
Empty set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE 1;
+--------+-----------+----------+-------+-------+------+---------+
| stuId | fname | lname | major | minor | ach | advisor |
+--------+-----------+----------+-------+-------+------+---------+
100000	Tony	Hawk	CSCI	CINF	40	1011
100001	Mary	Hawk	CSCI	CINF	35	1011
100002	David	Hawk	CSCI	ITEC	66	1012
100003	Catherine	Lim	ITEC	CINF	20	NULL
100004	Larry	Johnson	ITEC	NULL	66	1017
100005	Linda	Johnson	CINF	ENGL	13	1015
100006	Lillian	Johnson	CINF	ITEC	18	1016
100007	Ben	Zico	NULL	NULL	16	NULL
100008	Bill	Ching	ARTS	NULL	90	NULL
100009	Linda	King	ARTS	CSCI	125	1018
100111	Cathy	Johanson	NULL	NULL	0	1018
+--------+-----------+----------+-------+-------+------+---------+
11 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE 2697;
+--------+-----------+----------+-------+-------+------+---------+
| stuId | fname | lname | major | minor | ach | advisor |
+--------+-----------+----------+-------+-------+------+---------+
100000	Tony	Hawk	CSCI	CINF	40	1011
100001	Mary	Hawk	CSCI	CINF	35	1011
100002	David	Hawk	CSCI	ITEC	66	1012
100003	Catherine	Lim	ITEC	CINF	20	NULL
100004	Larry	Johnson	ITEC	NULL	66	1017
100005	Linda	Johnson	CINF	ENGL	13	1015
100006	Lillian	Johnson	CINF	ITEC	18	1016
100007	Ben	Zico	NULL	NULL	16	NULL
100008	Bill	Ching	ARTS	NULL	90	NULL
100009	Linda	King	ARTS	CSCI	125	1018
100111	Cathy	Johanson	NULL	NULL	0	1018
+--------+-----------+----------+-------+-------+------+---------+
11 rows in set (0.001 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE '0';
Empty set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE '145';
+--------+-----------+----------+-------+-------+------+---------+
| stuId | fname | lname | major | minor | ach | advisor |
+--------+-----------+----------+-------+-------+------+---------+
100000	Tony	Hawk	CSCI	CINF	40	1011
100001	Mary	Hawk	CSCI	CINF	35	1011
100002	David	Hawk	CSCI	ITEC	66	1012
100003	Catherine	Lim	ITEC	CINF	20	NULL
100004	Larry	Johnson	ITEC	NULL	66	1017
100005	Linda	Johnson	CINF	ENGL	13	1015
100006	Lillian	Johnson	CINF	ITEC	18	1016
100007	Ben	Zico	NULL	NULL	16	NULL
100008	Bill	Ching	ARTS	NULL	90	NULL
100009	Linda	King	ARTS	CSCI	125	1018
100111	Cathy	Johanson	NULL	NULL	0	1018
+--------+-----------+----------+-------+-------+------+---------+
11 rows in set (0.001 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- warning: '' cannot be converted to a number.
MariaDB [toyu]> -- "Warning 1292 Truncated incorrect DOUBLE value: ''"
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE '';
Empty set, 1 warning (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- warning: '' cannot be converted to a number.
MariaDB [toyu]> -- "Warning 1292 Truncated incorrect DOUBLE value: ''"
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE 'Hello world';
Empty set, 1 warning (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE 1.49;
+--------+-----------+----------+-------+-------+------+---------+
| stuId | fname | lname | major | minor | ach | advisor |
+--------+-----------+----------+-------+-------+------+---------+
100000	Tony	Hawk	CSCI	CINF	40	1011
100001	Mary	Hawk	CSCI	CINF	35	1011
100002	David	Hawk	CSCI	ITEC	66	1012
100003	Catherine	Lim	ITEC	CINF	20	NULL
100004	Larry	Johnson	ITEC	NULL	66	1017
100005	Linda	Johnson	CINF	ENGL	13	1015
100006	Lillian	Johnson	CINF	ITEC	18	1016
100007	Ben	Zico	NULL	NULL	16	NULL
100008	Bill	Ching	ARTS	NULL	90	NULL
100009	Linda	King	ARTS	CSCI	125	1018
100111	Cathy	Johanson	NULL	NULL	0	1018
+--------+-----------+----------+-------+-------+------+---------+						
11 rows in set (0.000 sec)						
Example:						
-- 2. If a Boolean value is expected, null is implicitly type-converted to FALSE.						
SELECT e.*						
FROM enroll AS e						
WHERE e.n_alerts;						
Result:						
MariaDB [toyu]> SELECT e.*						
-> FROM enroll AS e						
-> WHERE e.n_alerts;						
+--------+---------+-------+----------+						
stuId	classId	grade	n_alerts			
+--------+---------+-------+----------+						
100002	10000	B-	3			
100000	10001	A	2			
100000	10002	B+	1			
100002	10002	B+	2			
100002	10003	D	4			
100000	10004	A-	1			
100007	10007	F	4			
100000	11001	D	4			
+--------+---------+-------+----------+						
8 rows in set (0.000 sec)						
Example:						
-- 3. null is a special value different with 0 or empty string.						
SELECT FALSE IS NULL,						
TRUE IS NULL,						
0 IS NULL,						
1 IS NULL,						
"" IS NULL,						
"Hey" IS NULL,						
NULL IS NULL,						
NULL IS NOT NULL;						
Result:						
MariaDB [toyu]> SELECT FALSE IS NULL,						
-> TRUE IS NULL,						
-> 0 IS NULL,						
-> 1 IS NULL,						
-> "" IS NULL,						
-> "Hey" IS NULL,						
-> NULL IS NULL,						
-> NULL IS NOT NULL;						
+---------------+--------------+-----------+-----------+------------+---------------+--------------+------------------+						
FALSE IS NULL	TRUE IS NULL	0 IS NULL	1 IS NULL	"" IS NULL	"Hey" IS NULL	NULL IS NULL
+---------------+--------------+-----------+-----------+------------+---------------+--------------+------------------+						
0	0	0	0	0	0	1
+---------------+--------------+-----------+-----------+------------+---------------+--------------+------------------+
1 row in set (0.000 sec)
Example:
-- 4. Comparing null to other values return null, which is converted to false.
SELECT NULL > 3,
 NULL <= 3,
 5 >= NULL,
 5 < NULL,
 NULL > NULL,
 NULL <= NULL;

SELECT *
FROM student
WHERE NULL > 3;

-- Comparisons must be mindful of null.
SELECT e.*
FROM enroll AS e
WHERE e.n_alerts >= 2;

SELECT e.*
FROM enroll AS e
WHERE e.n_alerts < 2;

SELECT e.*
FROM enroll AS e;

-- Q. List all enrollment records without 2 or more n_alerts.
-- Naive solution
SELECT e.*
FROM enroll AS e
WHERE e.n_alerts < 2;

-- Q. List all enrollment records without 2 or more n_alerts.
-- More likely solution
SELECT e.*
FROM enroll AS e
WHERE e.n_alerts IS NULL
OR e.n_alerts < 2;

-- Q. List all enrollment records without a value in n_alerts.
-- incorrect answer.
SELECT e.*
FROM enroll AS e
WHERE e.n_alerts <> NULL;

-- Q. List all enrollment records without a value in n_alerts.
-- correct answer.
SELECT e.*
FROM enroll AS e
WHERE e.n_alerts IS NOT NULL;
Result:
MariaDB [toyu]> -- 4. Comparing null to other values return null, which is converted to false.
MariaDB [toyu]> SELECT NULL > 3,
 -> NULL <= 3,
 -> 5 >= NULL,
 -> 5 < NULL,
 -> NULL > NULL,
 -> NULL <= NULL;
+----------+-----------+-----------+----------+-------------+--------------+
| NULL > 3 | NULL <= 3 | 5 >= NULL | 5 < NULL | NULL > NULL | NULL <= NULL |
+----------+-----------+-----------+----------+-------------+--------------+
| NULL | NULL | NULL | NULL | NULL | NULL |
+----------+-----------+-----------+----------+-------------+--------------+
1 row in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT *
 -> FROM student
 -> WHERE NULL > 3;
Empty set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- Comparisons must be mindful of null.
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts >= 2;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100002	10000	B-	3
100000	10001	A	2
100002	10002	B+	2
100002	10003	D	4
100007	10007	F	4
100000	11001	D	4
+--------+---------+-------+----------+
6 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts < 2;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100000	10000	A	0
100001	10001	A-	0
100000	10002	B+	1
100000	10003	C	0
100004	10003	A	0
100000	10004	A-	1
100005	10004	A-	0
100005	10005	A-	0
100008	10007	C-	0
100007	10008	A-	0
+--------+---------+-------+----------+
10 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100000	10000	A	0
100001	10000	NULL	NULL
100002	10000	B-	3
100000	10001	A	2
100001	10001	A-	0
100000	10002	B+	1
100002	10002	B+	2
100000	10003	C	0
100002	10003	D	4
100004	10003	A	0
100005	10003	NULL	NULL
100000	10004	A-	1
100004	10004	B+	NULL
100005	10004	A-	0
100006	10004	C+	NULL
100005	10005	A-	0
100006	10005	A	NULL
100005	10006	B+	NULL
100007	10007	F	4
100008	10007	C-	0
100007	10008	A-	0
100000	11001	D	4
+--------+---------+-------+----------+
22 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- Q. List all enrollment records without 2 or more n_alerts.
MariaDB [toyu]> -- Naive solution
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts < 2;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100000	10000	A	0
100001	10001	A-	0
100000	10002	B+	1
100000	10003	C	0
100004	10003	A	0
100000	10004	A-	1
100005	10004	A-	0
100005	10005	A-	0
100008	10007	C-	0
100007	10008	A-	0
+--------+---------+-------+----------+
10 rows in set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- Q. List all enrollment records without 2 or more n_alerts.
MariaDB [toyu]> -- More likely solution
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts IS NULL
 -> OR e.n_alerts < 2;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100000	10000	A	0
100001	10000	NULL	NULL
100001	10001	A-	0
100000	10002	B+	1
100000	10003	C	0
100004	10003	A	0
100005	10003	NULL	NULL
100000	10004	A-	1
100004	10004	B+	NULL
100005	10004	A-	0
100006	10004	C+	NULL
100005	10005	A-	0
100006	10005	A	NULL
100005	10006	B+	NULL
100008	10007	C-	0
100007	10008	A-	0
+--------+---------+-------+----------+
16 rows in set (0.000 sec) MariaDB [toyu]> -- Q. List all enrollment records without a value in n_alerts.

MariaDB [toyu]> -- incorrect answer.
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts <> NULL;
Empty set (0.000 sec)

MariaDB [toyu]>
MariaDB [toyu]> -- Q. List all enrollment records without a value in n_alerts.
MariaDB [toyu]> -- correct answer.
MariaDB [toyu]> SELECT e.*
 -> FROM enroll AS e
 -> WHERE e.n_alerts IS NOT NULL;
+--------+---------+-------+----------+
| stuId | classId | grade | n_alerts |
+--------+---------+-------+----------+
100000	10000	A	0
100002	10000	B-	3
100000	10001	A	2
100001	10001	A-	0
100000	10002	B+	1
100002	10002	B+	2
100000	10003	C	0
100002	10003	D	4
100004	10003	A	0
100000	10004	A-	1
100005	10004	A-	0
100005	10005	A-	0
100007	10007	F	4
100008	10007	C-	0
100007	10008	A-	0
100000	11001	D	4
+--------+---------+-------+----------+
16 rows in set (0.000 sec)
3. Interpretation of null values
· Three possible interpretations of NULL:
1. Not applicable.
2. Missing value.
3. No information at all.
Example:
Consider the attribute SpouseName. A Null value may mean:
1. not applicable: the person is not married.
2. missing information: the person is married but we do not have the name of the spouse.
3. no information at all: we do not know whether the person is married or not.
How do we distinguish between the three meanings of the null value in this case?
By using an extra attribute, such as MaritalStatus.
	...
	SpouseName
	MaritalStatus
	...

	
	Null
	Married
	

	
	Null
	Not married
	

	
	Null
	Null
	

Database Modeling
by K. Yue
1.Modeling and Modeling Transformation
· Why modeling?
1. Many DB developers may just directly construct the relational schema without formal data modeling. What are the problems with that?
1. It may work for very simple problems.
2. For more complicated problems, it is necessary to capture the detailed requirements before designing a solution.
2. Initial ideas are usually based on needs. Their definitions can be very coarse and ambiguous. Real-world examples from past UHCL capstone projects:
1. "I want a system to store and retrieve sale receipts for small business to claim sale tax waiver."
2. "A mobile phone application to share and manage disaster recovery information."
3. How do we construct a precise and executable computer solution to a vague real-world problem?
Software development is logical modeling (step [1] in the following diagram): constructing an executable logical model (such as using SQL, Java, etc., as the logical language.)
[image: A diagram of a problem solving process

Description automatically generated]
Logical modeling spans many phases in the software lifecycle:
1. Analysis
2. Design: architectural and component
3. Implementation (coding)
Furthermore, logical languages are closer to the machine world, and optimized accordingly. They are not designed to describe the real-world or capture real world requirement.
Conceptual modeling is introduced as shown in the diagram below:
[image: A diagram of a problem solving process

Description automatically generated]
Advantages of conceptual modeling:
1. Conceptual modeling languages, such as Unified Modeling Language (UML) or Entity-Relationship (ER) model, are designed to describe real-world problems and can better capture and refine problem requirements.
2. The process is a n-step process, breaking down the complexity.
3. Iterative refinement of the conceptual model provides eventually the necessary fidelity for different software development phases.
In Model-Driven Software Engineering (MDSE), software development is the development of a sequence of models, transforming higher level models to lower-level models in the process.
[image: A diagram of a model

Description automatically generated]
2. Motivation for learning modeling
Bureau of Labor Statistics, Computer and Information Technology Job outlook 2021 to 2031:
[image: A table of statistics with numbers and text

Description automatically generated]
Older data for comparison:
Bureau of Labor Statistics, Computer and Information Technology Job outlook 2016 to 2026:
[image: job outlook]
Average annual wage over all jobs in 2017: $37,600. 2016 to 2026 expected overall growth rate is 7%.
· A main difference between "software developers" and "computer programmers" are modeling and model transformation.
3. DB Modeling
What is involved in DB modeling?
1. Understand, capture, and refine the application requirements until they are clear and precise enough for design and implementation.
2. Communication is crucial. "Do not build your DB application. Build the DB application for the users."
3. Complexity management.
4. Three main topics in modeling tools and techniques:
1. Modeling language: e.g., UML, ER.
2. Theory and 'Good' practices: e.g., architectural and design patterns.
3. Modeling process: what process to follow in modeling, e.g., Agile.
3.1 Understanding the problem domain
How do people solve problems?
1. Obtain an initial understanding of the problem.
2. Form a model to capture the understanding.
3. Refine the model to include necessary details.
4. Based on the model, devise a solution.
5. Implement the solution.
A serious problem of many novices is that they do not spend enough time and effort in steps (1) to (3) (i.e., modeling) and jump to (4) and (5) quickly.
· Your supervisor/user/customer/domain expert may not have a clear model themselves!
· In most cases, for novice software developers: what you think the applications should be is NOT as important! Instead, what the domain experts and the users think is crucial.
What can you do to understand the problem and model it? Some good practices:
1. Start by asking a lot of questions.
2. Collect and analyze as much documentation as possible.
3. Study and use the existing system: find out what is currently being used. Use them alongside the users. Participate in the work process.
4. Model, write, and document!
5. Use your own words and avoid the 'copy and paste' syndrome.
1. A simple example below.
2. The copy and paste syndrome in modeling and software development is much more difficult to unearth and costly to fix. A realistic example of an application letter to a Data Science Assistant Professor postion at UHCL.
[image: A close-up of a letter

Description automatically generated]
Some possible generic questions to ask for modeling.
1. What are the purposes of the application?
2. What problems will the application solve? What value will it provide?
3. What are the boundaries and context of the applications?
4. Who are the users?
5. Who are the domain experts?
6. What documentation is available?
7. How does the existing system work?
8. What are the workflow processes of the current system?
Prepare your own list!
3.2 Modeling Languages
Two important options for database modeling languages:
1. Entity Relationship (ER) Modeling and Extended ER (EER) Modeling: more relational database specific.
2. UML modeling: more general purpose.
Some advantages of ER diagrams:
1. Ease of understanding
2. Simpler
3. More specific to relational database modeling
4. Good collection of theory and best practices
5. Good vendor and tool support
Some disadvantages of ER diagrams:
1. Lower expressiveness
2. Not concise
3. Lack of standards
4. many versions that can be confusing
5. Narrow focus on relational databases
What do we look for in a modeling language?
1. Completeness: can it capture all needed information?
2. Expressiveness: can it capture information in an efficient and easy way for discussion and communication?
3. Domain support: how well does it support capturing the information in the application domain?
4. Precision: Is it detailed enough?
5. Accuracy: Is it ambiguous?
6. Conciseness: What is the 'information density'?
7. Standardization: Are there many competing versions?
8. Tool support: Are there strong tool support?
9. Community support: Are there a strong community?
10. Extensibility: Can it be extended to satisfy a specific domain?
We will use on UML in this course.
Read: A Badia and D. Lemire. A call to arms: revisiting database design. SIGMOD Record 40, 3 (November 2011), 61-69.

DOWNLOAD AND INSTALL ASTAH student version if you have a computer.
Introduction to UML
by K. Yue
1. Introduction to UML
· UML: A set of graphical notations for object-oriented modeling.
· Wikipedia: "The Unified Modeling Language (UML) offers a way to visualize a system's architectural blueprints in a diagram."
· A standard maintained by OMG: OMG's UML page.
· Two major versions:
· Version 1.4.2: international standard released in 2005.
· Version 2.5.1: released in 2017, added nested classifiers and improved behavior models. Specification: https://www.omg.org/spec/UML
· Two main types of diagrams:
· Structure diagrams: model static structures.
· Behavior diagrams: model dynamic behaviors.
· Version 2.5 has 15 diagrams: 7 structure diagrams and 8 behavior diagrams.
· Some Resources:
· OMG UML Resource
· SPARX UML Tutorial.
· We will focus on the class diagram only.
Class Diagram of UML 2.2 diagram (from Wikipedia):
[image: UML 2.2 Diagram]
2. Class Diagrams (Emphasis on DB applications)
2.1 Introduction:
· A static structure diagram in UML.
· "Describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among the classes." -- from Wikipedia.
· Read "class diagram" from Wikipedia: http://en.wikipedia.org/wiki/Class_diagram.
· For a significantly better introduction by IBM: http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/.
· Two kinds of tools for drawing UML diagrams:
· Graphical tools: main purposes are drawing diagrams (e.g., MS Visio, draw io, etc.)
· Computer-Aided Software Engineering (CASE) tools: for software development with some understanding of the semantics of diagram elements (e.g., MagicDraw, IBM Rational Rhapsody, Visual Paradigm, Astah, etc.)
· We use Astah UML Editor
· We will use community version in classroom demonstration, which is now deprecated.
· Students can use the more powerful student version for free: search "astah student license".
Introduction to UML
by K. Yue
1. Introduction to UML
· UML: A set of graphical notations for object-oriented modeling.
· Wikipedia: "The Unified Modeling Language (UML) offers a way to visualize a system's architectural blueprints in a diagram."
· A standard maintained by OMG: OMG's UML page.
· Two major versions:
· Version 1.4.2: international standard released in 2005.
· Version 2.5.1: released in 2017, added nested classifiers and improved behavior models. Specification: https://www.omg.org/spec/UML
· Two main types of diagrams:
· Structure diagrams: model static structures.
· Behavior diagrams: model dynamic behaviors.
· Version 2.5 has 15 diagrams: 7 structure diagrams and 8 behavior diagrams.
· Some Resources:
· OMG UML Resource
· SPARX UML Tutorial.
· We will focus on the class diagram only.
Class Diagram of UML 2.2 diagram (from Wikipedia):
[image: UML 2.2 Diagram]
2. Class Diagrams (Emphasis on DB applications)
2.1 Introduction:
· A static structure diagram in UML.
· "Describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among the classes." -- from Wikipedia.
· Read "class diagram" from Wikipedia: http://en.wikipedia.org/wiki/Class_diagram.
· For a significantly better introduction by IBM: http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/.
· Two kinds of tools for drawing UML diagrams:
· Graphical tools: main purposes are drawing diagrams (e.g., MS Visio, draw io, etc.)
· Computer-Aided Software Engineering (CASE) tools: for software development with some understanding of the semantics of diagram elements (e.g., MagicDraw, IBM Rational Rhapsody, Visual Paradigm, Astah, etc.)
· We use Astah UML Editor
· We will use community version in classroom demonstration, which is now deprecated.
· Students can use the more powerful student version for free: search "astah student license".
· [image: A screenshot of a computer

Description automatically generated]

Example:
Problem description: A faculty member (e.g. Yue) advises a student (e.g. Smith) ….. A faculty member has a faculty id and name (breakdown to fname and lname)
Concepts (have data storage requirements):
· Faculty: modeled by a class (form objects, e.g. Yue, Hasan, Wu, …)
· Student: modeled by a class.
· Advises: modeled as an association: Yue advises Smith
· Faculty id is a property of a faculty (e.g. Bun Yue’s id is 1234567): attribute of facully objects
[image: A screenshot of a computer

Description automatically generated]
Example of creating the class ‘class’:
[image: A screenshot of a computer

Description automatically generated]
2025_2_4_ex1.asta:
Class:
1. Name
2. Data member/attribute compartment: properties
3. Methods/Operation compartment: less important in data
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]

· One may also use UML object diagrams to show objects and their associations of a snapshot of the system.
2.2 A Simple Conceptual Modeling Process
1. Study application requirements to gain a good understanding of the problem.
2. Conduct an analysis to extract concepts that may have data requirements.
3. For each concept, design how should it be modeled? Major options are:
1. by attributes
2. by a class
3. by associations between classes (including special associations, such as composition, aggregation, generalization, etc.)
4. no need to model (as it does not represent any data requirement)
These steps are repeated until the model reaches the necessary fidelity, accuracy, and precision.
Example:
Problem. A used car dealership application's subsystem: information about cars and their manufacturers.
Specification description: A car manufacturer has a unique id and name. A car maker may make many cars. For example, Honda, which may have a manufacturer id of 10001, makes Civic and Accord.
Concepts:
1. Car: class
2. Manufacturer: class
3. Unique id: 10001 (X) is the id of Honda (Y): attribute of manufacturer
4. Name: attribute of manufacturer
5. Car maker: synonym of manufacturer; no need to model.
6. Make
7. Honda
8. Manufacturer id
9. 10001
10. Civic
11. Accord

Choices of model decisions:

1. Class X (object: instance of a class); have properties, associations. Objects exists by themselves X by itself. E.g. X: faculty; Yue faculty object
2. Attributes (properties) X of a class, etc: value only; simple. Fname of a faculty. X of Y. Bun is the first name of the faculty ‘Bun Yue’
3. Associations X (relationship between two objects). A – X – B. For example Yue (A) advises (X) Smith (B)
4. No need to model

Analysis and Design
Some observations:
1. Manufacturer: a class (template) that can be used to initiate many manufacturer objects (instances).
2. Honda: an object of the class Manufacturer.
3. Resolve ambiguous terms: e.g., the term "manufacturer" may refer to the manufacturer class, or a particular manufacturer (i.e., a manufacturer object such as Honda).
4. Define synonym: manufacturer, car manufacturer and car maker may be the same. Different terms can refer to the same concept.
5. "Unique id": may be modeled as an attribute (name), a property of the manufacturer class.
6. Make additional assumptions: E.g., every manufacturer object must have an unique id.
7. 10001: attribute (value) of the id of a manufacturer object.
8. Name: a property of a manufacturer.
9. Another additional assumption: Every manufacturer object must have a name.
10. Car: a class, as there may be many brands of cars.
11. Prepare questions: E.g., do we need to introduce the concept model (e.g., Coupe, Sedan, Si Coupe)?
12. Civic and Accord: object instances of Car.
13. Additional assumption: Every car must have a name as its attribute.
14. Make, or manufacture: a relationship between a manufacturer (object) and a car (object). A manufactor (object) makes (verb: possible asspication) a car (object).
Class Diagram:
[image: car1]
Object Diagram:
[image: car_2]
2.3 Classes
2.3.1 Basics
1. Drawn as a rectangular box.
2. The class names, attributes, and operations may be specified, with selected details in the name, attribute, and operation compartments respectively.
3. Attribute and operation compartments are optional.
4. For DB modeling,
1. The attribute compartment will eventually need to be clearly modeled.
2. The operation compartment may not be needed.
5. The levels of details depend on the phases of modeling. It is a common mistake to specify too much detail in the early modeling phases.
6. As modeling proceeds, more details are added, updated, and refined.
Note that software application modeling and database modeling have different foci.
1. Software modeling: focus on operations (methods, especially public methods).
2. Database modeling: focus on attributes (data).
Example: The following sequence of diagrams of how the modeling of the used car dealership application may proceed.
Initial version: v0.0.1.0:
· Only some major classes, associations, and attributes.
[image: A diagram of a customer

Description automatically generated]
Version v0.0.1.1:
· Add a payment class and some attributes.
[image: A diagram of a company structure

Description automatically generated]
Version v0.0.1.2:
1. Decided to split the concept 'car' into two concepts 'car model' and 'car'. Adjust associations.
2. Add some type information.
[image: A diagram of a car model

Description automatically generated]
Version v0.0.1.3:
1. Add an association between Payment and Car.
2. Add multiplicity of the association "of the model of":
1. A car must be made of one car model.
2. There may be many cars made of the same model.
3. Add multiplicity of 1 to the attributes Amount and PayTime of the class Payment. They are mandatory.
[image: A diagram of a model

Description automatically generated]
· For example, one may focus on the main classes and their associations in the first model, without worrying about the attribute or operation compartments.
· Most UML editors allow controlling visibility of different elements. For example, in Astah:
[image: astah_1]
· A stereotype (specifying the kind of entities) and a property list with tagged values can be added to any compartment.
· Their flexibility allows for customization and extensibility to fit specific applications.
· Additional properties on data members may be specified, such as:
1. Visibility: + (public: +, protected: #, private: -, etc.)
2. data types
3. abstract (in italic) or concrete (as constraints)
4. class members (underscored) or instance members
5. default values
Example: for software modeling:
[image: A screenshot of a computer program

Description automatically generated]
Example: for database modeling.
[image: astah_2]
The classes Patron, Member and Department with some attributes may be modeled in the first draft of the UML class diagram. Boxes in the diagram above:
1. In a subsequent iteration, attributes may be added using settings of the UML tool showing visibility of the attribute members.
2. Data types may be included using predefined data types provided by the tool.
3. In a further iteration, stereotype may be added, such as to identify the primary key <<PK>> and simple candidate key <<unique>>.
4. More specific user-defined types (or implementation types) may be used.
5. Operation members may be added. They are in general less important than data members in data modeling.
6. Multiplicity should eventually be added, as shown in the diagram for Patron below.
[image: astah_3]
· Note that multiplicity can be used to depict nullable and multi-valued attributes. In this example, PatronId is not nullable ([1]), Phone is nullable ([0..1]) and Hobbies can have multiple values ([0..*]).
Check out the introductions to class diagrams from agile modeling and wikipedia.
· Some possible relational database extensions on attributes may include:
1. Multi-valued: * or by using multiplicity.
2. Multiplicity can also be used to indicate whether an attribute is nullable.
3. Derived: <<derived>> using stereotype, \, or using other specific notations
4. Primary key: <<PK>> as stereotype.
5. Candidate keys: <<CK>> as stereotype.
6. Unique field: <<unique>> as stereotype.
7. Nullability: <<nullable>> or by using multiplicity.
8. User-defined or system defined SQL data types.
9. Indexing: <<index>> as stereotype.
· Check with your organizations for UML guidelines on a specific project.
· An example of a database profile for UML: http://www.agiledata.org/essays/umlDataModelingProfile.html
. may be adapted for uses in later phase of modeling.
2.3.2 More Properties of Classes
· A class is a 'first-class citizen.'
· It has attributes.
· It can form associations with other classes.
· It can have operations.
· Objects of a class can exist by themselves.
· It has more structures for modeling data requirements.
· As a comparison, an attribute is not a first-class citizen.
· It does not have sub-attributes.
· It cannot form associations with other elements.
· The existence of an attribute depends on the object..
· Objects can be instantiated from classes.
Example:
[image: asta1]
We may have four objects of the student class: S1, S2, S3 and S4. Each student object represents an individual student in a database application.
We may have three objects of the course class: C1, C2, and C3. Each course object represents an individual course in the database application.
2.4 Associations
· Binary associations are represented by solid lines.
· Important options include:
1. Association names with directional arrows (for reading).
2. Association roles: the role of an object participating in an association.
3. Multiplicities: the allowed number of associated objects.
4. Association attributes can usually stored by promoting an association to an association classes.
5. Qualifiers: association attributes to partition the targeted classes.
6. Navigational requirement: specified by arrows. Usually not used in data modeling.
7. Dependency constraints: by dotted lines.
· Some modeling questions and decisions:
1. Should we model something as a class or as an association?
2. Should we model something as a class or as an attribute?
3. What kind of association should I use? Binary association, association class, n-ary association?
Example: Note that no attribute is shown in this initial phase.
[image: A diagram of a company

Description automatically generated]
Note:
1. Job is an association class.
2. The arrow in the association "works-for" shows the direction of the association.
3. The association "manages" is between two job objects.
4. The {or} designation specifies the partition of the account class into two classes: person (account) and corporate (account).
Example: For:
[image: asta1]
The association Enroll describes the association 'type'. An association is actually between two objects (a student object and a course object). Examples:
S1 -- C1: meaning student S1 is enrolled in course C1.
S1 -- C3: (The associations S1--C2 and S1-C4 do not exist. This means the student S1 has not enrolled in the C2 or C4.)
S2 -- C1
S2 -- C2
S2 -- C4
S3 -- C3
S4 -- C1
S4 -- C4
2.5 Multiplicity
· Multiplicity can be specified by a number, the symbol * (many), a range, or a set. Some example:
· 0..1: zero or 1
· 1..1: only 1
· 1: may be 0..1 or 1..1; usually interpreted as 1..1
· 0..*: zero or many
· 1..*: 1 or many
· *: many; may be 0..* or 1..*
· 1..4: 1 to 4
· {1, 2, 6}: 1, 2 or 6
· {1, 3:5, 7:9}: 1, 3, 4, 5, 7, 8, 9
· Multiplicity is a very common source of errors. Please refer to the explanation in the following diagram until you are very clear about it.
[image: asta 5]
· Meaning:
· Every X object must be associated with n Y objects.
· Every Y object must be associated with m X objects.
Example
What do you think about these class diagrams?
(a)
[image: asta 3]
Assumptions made:
1. A student may take many courses.
2. Not sure whether a student is allowed to take zero course since * (instead of 0..* or 1..* is used).
3. A course may have many students enrolled.
4. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
(b)
[image: asta 4]
Assumptions made:
1. A student must be enrolled in one or more courses (may not be a reasonable assumption).
2. A course may have 0 or more students enrolled.
(c)
[image: asta 2]
Assumptions made:
1. A student can only be enrolled in 0 or 1 course only (sound not reasonable).
2. A course may have many students enrolled.
3. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
Aggregation indicator
1. aggregation (hollow diamond) and composition indicator (solid diamond):
2. Aggregation models the ‘a-part-of’ relationship (whole-part). E.g., car-wheel.
3. Composition is a strong form of aggregation: the part's lifecycle is dependent on the whole's lifecycle; e.g. university-department, building-room.
4. They can also be represented by using multiplicity.
Example: Aggregation and Composition
[image: A diagram of a graph

Description automatically generated]
What do you think about this composition and aggregation examples in: http://en.wikipedia.org/wiki/File:Congregationalism?
Ternary Associations
· N-ary associations are represented using a diamond connecting to participating classes.
· Not so common.
· May be modeled as a class instead.
· A ternary association involves three participating objects.
An example from a tutorial:
[image: A diagram of a football team

Description automatically generated]
Notes:
· In modeling, a ternary association can reasonably be replaced by promoting it to a class and add three binary associations.
· Don't use n-ary associations where n>=3 unless you are sure.
Generalization and Specialization
· Generalization is represented by a hollow triangle at the superclass.
· Generalization models the 'a-kind-of’ association.
· It is mainly used to
· manage classes with common data members and methods by putting these common members into their superclass.
· provide inheritance.
· avoid multiple copies of member definition.
· Some options of generalization include:
· discriminator (the name of the partition),
· powertype (a class in which an instance of it is a subclass of the superclass),
· constraints (overlapping, disjoint, complete, incomplete and user defined constraints).
Example:
[image: A diagram of a vehicle

Description automatically generated]
[image: A diagram of a tree

Description automatically generated]
· There are many possible options and extensions.
Constructing class diagrams: some tips
1. There are many methodologies and best practice tips to construct effective class diagrams.
2. There are many possible modeling options: e.g., classes versus attributes, classes versus associations, multiplicity, etc.
3. Need to fully understand the assumptions and implications when making modeling decisions.
4. Do not model implementation details in earlier modeling phases.
3. Example: toyu
A reasonable conceptual model of the toyu database in UML:
[image: A diagram of a computer program

Description automatically generated with medium confidence]

· One may also use UML object diagrams to show objects and their associations of a snapshot of the system.
2.2 A Simple Conceptual Modeling Process
1. Study application requirements to gain a good understanding of the problem.
2. Conduct an analysis to extract concepts that may have data requirements.
3. For each concept, design how should it be modeled? Major options are:
1. by attributes
2. by a class
3. by associations between classes (including special associations, such as composition, aggregation, generalization, etc.)
4. no need to model (as it does not represent any data requirement)
These steps are repeated until the model reaches the necessary fidelity, accuracy, and precision.
Example:
Problem. A used car dealership application's subsystem: information about cars and their manufacturers.
Specification description: A car manufacturer has a unique id and name. A car maker may make many cars. For example, Honda, which may have a manufacturer id of 10001, makes Civic and Accord.
Analysis and Design
Some observations:
1. Manufacturer: a class (template) that can be used to initiate many manufacturer objects (instances).
2. Honda: an object of the class Manufacturer.
3. Resolve ambiguous terms: e.g., the term "manufacturer" may refer to the manufacturer class, or a particular manufacturer (i.e., a manufacturer object such as Honda).
4. Define synonym: manufacturer, car manufacturer and car maker may be the same. Different terms can refer to the same concept.
5. "Unique id": may be modeled as an attribute (name), a property of the manufacturer class.
6. Make additional assumptions: E.g., every manufacturer object must have an unique id.
7. 10001: attribute (value) of the id of a manufacturer object.
8. Name: a property of a manufacturer.
9. Another additional assumption: Every manufacturer object must have a name.
10. Car: a class, as there may be many brands of cars.
11. Prepare questions: E.g., do we need to introduce the concept model (e.g., Coupe, Sedan, Si Coupe)?
12. Civic and Accord: object instances of Car.
13. Additional assumption: Every car must have a name as its attribute.
14. Make, or manufacture: a relationship between a manufacturer (object) and a car (object). A manufactor (object) makes (verb: possible asspication) a car (object).
Class Diagram:
[image: car1]
Object Diagram:
[image: car_2]
2.3 Classes
2.3.1 Basics
1. Drawn as a rectangular box.
2. The class names, attributes, and operations may be specified, with selected details in the name, attribute, and operation compartments respectively.
3. Attribute and operation compartments are optional.
4. For DB modeling,
1. The attribute compartment will eventually need to be clearly modeled.
2. The operation compartment may not be needed.
5. The levels of details depend on the phases of modeling. It is a common mistake to specify too much detail in the early modeling phases.
6. As modeling proceeds, more details are added, updated, and refined.
Note that software application modeling and database modeling have different foci.
1. Software modeling: focus on operations (methods, especially public methods).
2. Database modeling: focus on attributes (data).
Example: The following sequence of diagrams of how the modeling of the used car dealership application may proceed.
Initial version: v0.0.1.0:
· Only some major classes, associations, and attributes.
[image: A diagram of a customer

Description automatically generated]
Version v0.0.1.1:
· Add a payment class and some attributes.
[image: A diagram of a company structure

Description automatically generated]
Version v0.0.1.2:
1. Decided to split the concept 'car' into two concepts 'car model' and 'car'. Adjust associations.
2. Add some type information.
[image: A diagram of a car model

Description automatically generated]
Version v0.0.1.3:
1. Add an association between Payment and Car.
2. Add multiplicity of the association "of the model of":
1. A car must be made of one car model.
2. There may be many cars made of the same model.
3. Add multiplicity of 1 to the attributes Amount and PayTime of the class Payment. They are mandatory.
[image: A diagram of a model

Description automatically generated]
· For example, one may focus on the main classes and their associations in the first model, without worrying about the attribute or operation compartments.
· Most UML editors allow controlling visibility of different elements. For example, in Astah:
[image: astah_1]
· A stereotype (specifying the kind of entities) and a property list with tagged values can be added to any compartment.
· Their flexibility allows for customization and extensibility to fit specific applications.
· Additional properties on data members may be specified, such as:
1. Visibility: + (public: +, protected: #, private: -, etc.)
2. data types
3. abstract (in italic) or concrete (as constraints)
4. class members (underscored) or instance members
5. default values
Example: for software modeling:
[image: A screenshot of a computer program

Description automatically generated]
Example: for database modeling.
[image: astah_2]
The classes Patron, Member and Department with some attributes may be modeled in the first draft of the UML class diagram. Boxes in the diagram above:
1. In a subsequent iteration, attributes may be added using settings of the UML tool showing visibility of the attribute members.
2. Data types may be included using predefined data types provided by the tool.
3. In a further iteration, stereotype may be added, such as to identify the primary key <<PK>> and simple candidate key <<unique>>.
4. More specific user-defined types (or implementation types) may be used.
5. Operation members may be added. They are in general less important than data members in data modeling.
6. Multiplicity should eventually be added, as shown in the diagram for Patron below.
[image: astah_3]
· Note that multiplicity can be used to depict nullable and multi-valued attributes. In this example, PatronId is not nullable ([1]), Phone is nullable ([0..1]) and Hobbies can have multiple values ([0..*]).
Check out the introductions to class diagrams from agile modeling and wikipedia.
· Some possible relational database extensions on attributes may include:
1. Multi-valued: * or by using multiplicity.
2. Multiplicity can also be used to indicate whether an attribute is nullable.
3. Derived: <<derived>> using stereotype, \, or using other specific notations
4. Primary key: <<PK>> as stereotype.
5. Candidate keys: <<CK>> as stereotype.
6. Unique field: <<unique>> as stereotype.
7. Nullability: <<nullable>> or by using multiplicity.
8. User-defined or system defined SQL data types.
9. Indexing: <<index>> as stereotype.
· Check with your organizations for UML guidelines on a specific project.
· An example of a database profile for UML: http://www.agiledata.org/essays/umlDataModelingProfile.html
. may be adapted for uses in later phase of modeling.
2.3.2 More Properties of Classes
· A class is a 'first-class citizen.'
· It has attributes.
· It can form associations with other classes.
· It can have operations.
· Objects of a class can exist by themselves.
· It has more structures for modeling data requirements.
· As a comparison, an attribute is not a first-class citizen.
· It does not have sub-attributes.
· It cannot form associations with other elements.
· The existence of an attribute depends on the object..
· Objects can be instantiated from classes.
Example:
[image: asta1]
We may have four objects of the student class: S1, S2, S3 and S4. Each student object represents an individual student in a database application.
We may have three objects of the course class: C1, C2, and C3. Each course object represents an individual course in the database application.
2.4 Associations
· Binary associations are represented by solid lines.
· Important options include:
1. Association names with directional arrows (for reading).
2. Association roles: the role of an object participating in an association.
3. Multiplicities: the allowed number of associated objects.
4. Association attributes can usually stored by promoting an association to an association classes.
5. Qualifiers: association attributes to partition the targeted classes.
6. Navigational requirement: specified by arrows. Usually not used in data modeling.
7. Dependency constraints: by dotted lines.
· Some modeling questions and decisions:
1. Should we model something as a class or as an association?
2. Should we model something as a class or as an attribute?
3. What kind of association should I use? Binary association, association class, n-ary association?
Example: Note that no attribute is shown in this initial phase.
[image: A diagram of a company

Description automatically generated]
Note:
1. Job is an association class.
2. The arrow in the association "works-for" shows the direction of the association.
3. The association "manages" is between two job objects.
4. The {or} designation specifies the partition of the account class into two classes: person (account) and corporate (account).
Example: For:
[image: asta1]
The association Enroll describes the association 'type'. An association is actually between two objects (a student object and a course object). Examples:
S1 -- C1: meaning student S1 is enrolled in course C1.
S1 -- C3: (The associations S1--C2 and S1-C4 do not exist. This means the student S1 has not enrolled in the C2 or C4.)
S2 -- C1
S2 -- C2
S2 -- C4
S3 -- C3
S4 -- C1
S4 -- C4
2.5 Multiplicity
· Multiplicity can be specified by a number, the symbol * (many), a range, or a set. Some example:
· 0..1: zero or 1
· 1..1: only 1
· 1: may be 0..1 or 1..1; usually interpreted as 1..1
· 0..*: zero or many
· 1..*: 1 or many
· *: many; may be 0..* or 1..*
· 1..4: 1 to 4
· {1, 2, 6}: 1, 2 or 6
· {1, 3:5, 7:9}: 1, 3, 4, 5, 7, 8, 9
· Multiplicity is a very common source of errors. Please refer to the explanation in the following diagram until you are very clear about it.
[image: asta 5]
· Meaning:
· Every X object must be associated with n Y objects.
· Every Y object must be associated with m X objects.
Example
What do you think about these class diagrams?
(a)
[image: asta 3]
Assumptions made:
1. A student may take many courses.
2. Not sure whether a student is allowed to take zero course since * (instead of 0..* or 1..* is used).
3. A course may have many students enrolled.
4. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
(b)
[image: asta 4]
Assumptions made:
1. A student must be enrolled in one or more courses (may not be a reasonable assumption).
2. A course may have 0 or more students enrolled.
(c)
[image: asta 2]
Assumptions made:
1. A student can only be enrolled in 0 or 1 course only (sound not reasonable).
2. A course may have many students enrolled.
3. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
Aggregation indicator
1. aggregation (hollow diamond) and composition indicator (solid diamond):
2. Aggregation models the ‘a-part-of’ relationship (whole-part). E.g., car-wheel.
3. Composition is a strong form of aggregation: the part's lifecycle is dependent on the whole's lifecycle; e.g. university-department, building-room.
4. They can also be represented by using multiplicity.
Example: Aggregation and Composition
[image: A diagram of a graph

Description automatically generated]
What do you think about this composition and aggregation examples in: http://en.wikipedia.org/wiki/File:Congregationalism?
Ternary Associations
· N-ary associations are represented using a diamond connecting to participating classes.
· Not so common.
· May be modeled as a class instead.
· A ternary association involves three participating objects.
An example from a tutorial:
[image: A diagram of a football team

Description automatically generated]
Notes:
· In modeling, a ternary association can reasonably be replaced by promoting it to a class and add three binary associations.
· Don't use n-ary associations where n>=3 unless you are sure.
Generalization and Specialization
· Generalization is represented by a hollow triangle at the superclass.
· Generalization models the 'a-kind-of’ association.
· It is mainly used to
· manage classes with common data members and methods by putting these common members into their superclass.
· provide inheritance.
· avoid multiple copies of member definition.
· Some options of generalization include:
· discriminator (the name of the partition),
· powertype (a class in which an instance of it is a subclass of the superclass),
· constraints (overlapping, disjoint, complete, incomplete and user defined constraints).
Example:
[image: A diagram of a vehicle

Description automatically generated]
[image: A diagram of a tree

Description automatically generated]
· There are many possible options and extensions.
Constructing class diagrams: some tips
1. There are many methodologies and best practice tips to construct effective class diagrams.
2. There are many possible modeling options: e.g., classes versus attributes, classes versus associations, multiplicity, etc.
3. Need to fully understand the assumptions and implications when making modeling decisions.
4. Do not model implementation details in earlier modeling phases.
3. Example: toyu
A reasonable conceptual model of the toyu database in UML:
[image: A diagram of a computer program

Description automatically generated with medium confidence]

image5.png
toyu.department: 7 rows total (approximately)

>> Mext

& Shiow all

¥ deptCode ' deptName

Accounting

ARTS
CINF
csal
ENGL
ITEC
MATH

Arts

Computer Information Systems
Computer Science

English

Information Technology
Mathematics

¥ schoolCode
BUS

HSH

CSE

CSE

HSH

CSE

CSE

numStaff
10

12
12

image6.jpeg
Use natural language

(e.g. English): effective for
human, high-level, ambiguous,
imprecise, incomplete,
inaccurate, not designed for
execution.

Use computer language
(e.g. Java): effective for
computer, precise and
accurate, designed for
performance, executable.

Real World

Increasing
fidelity,
precision,
and accuracy

v

Machine World

for execution.

Real World
Problem

v and developers

Executable logical
Computer Model

Mostly by software

Problem solving

Real-World
Solution

Step 1. Logical Modeling:
mostly by modelers

A

Physical Model

Problem Solving using Computer

execute

Computer
Solution

image7.jpeg
Real World

Use natural language
(e.g. English): effective for
human, high-level, ambiguous,
imprecise, incomplete,
inaccurate, not designed for

execution.

Machine World

Use computer language
(e.g. Java): effective for
computer, precise and
accurate, designed for
performance, executable.

Step 1. Conceptual
Modeling: mostly
by modelers

Step 2 to (n-1).
Iterative

Real World

refinement

| Conceptual Model

Problem

Increasing
fidelity,
precision,
and accuracy

for execution.

(e.g. UML, ER)

Problem solving

A4

Step n.
transformation

Logical Model
(e.g. Relational,
NosQL, Java)

Model

Physical Model

Mostly by software

Real-World
Solution

ry

execute

Problem Solving using Computer

A 4

Computer
Solution

image8.jpeg
Real World

ﬁu

!

Machine World

1. Conceptual
Model: e.g. UML,
ER

8. Affect 7. Affect 4. Transform

2. Logical Model:
e.g. Relational,
sQlL, Java

6. Affect 5. Transform

3: Physical Model:
e.g. INNODB, JVM

Modeling and Model Transformations

Increasing fidelity,
precision,

and accuracy for
execution.

image9.jpeg
Job Outlook 2021-2031

\CIT Occupation (Bureau of Labor Statistics) Number Median Salary 10 year growth

Computer and information Research Scientists 33,500 $131,490 21.0%
Computer Network Architects 174,800 $120,520 4.0%
Computer Programmers 174,499 $93,000 -10.0%
Computer Support Specialists 875,700 $57,910 6.0%
Computer Systems Analysts 538,800 $99,270 9.0%
Database Administrators 144,500 $101,000 9.0%
Information Security Analysts 163,000 $102,600 35.0%
Network and Computer Systems Administrators 333,200 $80,600 3.0%
Software Developers, QA Analysts, and Testers 1,622,200 $109,020 25.0%
Web Developers 197,100 $78,300 23.0%
All CIT Jobs 4,257,299 $97,430 15.0%
All US Jobs 161.2 millions $45,760 4.8%

image10.png
Occupation Number Salary 10 years

growth

Computer and Information Research Scientists 25,600 $111,840 11%
Computer Network Architects 146,200 $101,210 9%

Computer Programmers 328,600 $79,840 -8%
Computer Support Specialists 766,900 $52,160 12%
Computer Systems Analysts 567,800 $87,220 21%
Database Administrators 120,000 $84,950 11%
Information Security Analysts 82,900 $92,600 18%
Network and Computer Systems Administrators 382,600 $79,700 8%

Software Developers 1,114,000 $102,280 17%

Web Developers 148,500 $66,130 27%

image11.jpeg
Dr. Bun Yue

Chair, Data Science

University of Houston-Clear Lake
2700 Bay Area Boulevard

1/1/2021
Dear Dr. Wu,
My name is Joe Smith, a recent PhD in Computer Science. | am excited to apply to join the

prestigious faculty body of the Computer Science Program at the University of Eastern Kentucky.
Your program has a very high reputation in my research area of artificial intelligence. | am a ...

image12.png
Diagram

—

Structure.
Diagram

Behavior
Diagram

Class,
Diagram

Component
Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure.
Diagram

Deployment

Diagram

Package
Diagram

Interaction State Machine

Diagram

Diagram

Notation: UML

5

Sequence
Diagram

Communication
Diagram

Tnteraction
Overview
Diagram

Timing
Diagram

image13.png
{

Eﬁ Astah

File Edit Diagram Alignment View Tools Window Help

1
1

EE v v v v v v v v v v v

VA

B) Open Project

New Project

CREATE DIAGRAMS ~—_

Class Diagram ~-€

[Ro] UseCase Diagram

Statemachine Diagram Activity Diagram

Sequence Diagram Communication Diagram

Component Diagram Deployment Diagram

Composite Structure
Diagram

RECENT PROJECTS

s 2025 2 3.asta
s h2sol.asta
s hisol class.asta

'a'§ h1sol.asta

'a'§ h1sol.asta

Welcome to Astah!

To see the latest news about Astah, useful tips and promotions, please connect to the internet. If you are
using a proxy, go to [Tool] - [System Properties] - [Network] to set up.
N

—
iere- W HE 8-AF 2" A)

180NN
QO ENGR al rraaam

()
astah<\community

CREATE DIAGRAMS
& Cusm Dugram @ UseCase Dugram

RECENT PROJECTS

LEARN UML, AGILE, AND ASTAH TIPS [18]

Free Code Generator for Astah
Nav 333000

N '4ov to open twe flles simultaneousty on Astah on Mac
G v 10,3018

Locallzing Astah - Chinese version (SergUfied) is now

avalable!
Nov 13, 2013

Check out our Tutorial Videos

e po Wil 58
_“dh\ h“-“g mu(an E anamore..

0 Free Plug-ins, or Create One 0 Know the difference

PHP, Cos, Co, ER Reverse engineering
and more are possible using Free Plug
Ins with Astan!

You can also create your own Plug-in
using the Aszah APT and SOK!

ST Deveicpment Tutorial

Changing how you design software and systems

http://astah.net

ast

ah<

image14.png
File Edit Diagram Alignment View Tools Window Help

V- IR C IR L M08 12 P AT e

Structure Inheritance Map Diagram : Class Diagram0
= 20-2?—2—4—6)(1 . E‘ass ' lagram' ’ E‘ass ' lagram -
+ java —
[Class Diagramo RERER? —'E54 T o QOO =L D TN A 52

Eclass ‘ pkg)

= FFaculty
“ facld:int class
gsmdent
teaghes
Facuilty Student
facld : int advises P>

Template Parameter Constraint
Association Property
Generalization Dependency
Base Stereotype Attribute Qngration

Name Type Typ... Visib... Initi... /
int ~€

facld privace
A/

Add Delete Edit

image15.png
ﬁAstah - [C:\S2025_JointDB\website\demo\d5333\2025_2_4 ex1.asta] (*)

File Edit Diagram Alignment View Tools Window Help

EBEED Q]

vﬁv|-v l_.‘lv&vévxvmvgauv

Structure Inheritance Map Diagram 4
(=] [12025_2 4 ex1
[java
Class Diagram0
Eclass

E Faculty
E Student

Template Parameter Constraint
Association Property
Generalization Dependency
Base Stereotype Attribute Operation

Namespace

Class Diagram0

[Z]Class Diagram0 / Class Diagram

Name class -

Visibility public ~
Abstract false ~
Leaf false ~
Active false ~

Definition

F .

advises }

Student

image16.png
EﬁAstah - [C:\S2025_JointDB\website\demo\d5333\2025_2_4 ex1.asta] (*)
File Edit Diagram Alignment View Tools Window Help

BEEOC O« = = @i #v v TvE.s

Structure Inheritance Map Diagram 4 Class Diagram0
- ?2&5 2-4.exd E ass DiagramO ass Diagram
java R
— L l
[&] Class Diagram0 @EDI’E}‘? B4t v Q0O =YL L

E Faculty

pkg

Faculty

image17.png
EﬁAstah - [C:\S2025_JointDB\website\demo\d5333\2025_2_4 ex1.asta] (*)
File Edit Diagram Alignment View Tools Window Help

k=D Qe @Ay e 2SR

Structure Inheritance Map Diagram : Class Diagram0
=1+ 12025_2_4_ex1

J;:sDiagramO RERER? =54 T o QOO =L D T[I'\& *E./3*

E Faculty &
Fstudent M \

Faculty % Student
_ advises }

Association End B Constraint B

Association End A Constraint A

Base Stereotype Constraint
Name advises ~—
Definition

i

image18.jpeg
Manufacturer

- MId : int[1]
- Name : string[1]

Car

makes P>

- Name : string[1]

image19.jpeg
Honda:

10001

image20.jpeg
Manufacturer

Mid

makes P>

buys }

Customer

Car

image21.jpeg
Manufacturer
Car
il makes P> Name
Name
buys | g
Customer Payment
cid Amount
FName pays | 4 -
PayTime
LName

image22.jpeg
Manufacturer

Mid
Name

CarModel

makes P>

Customer

Cld
FName

LName

Name

Vin
buys >

pays >

Payment

Amount : decimal
PayTime : Time

A

of the model of

Car

image23.jpeg
Manufacturer CarModel
Mid makes P> Name
Name 1
A 0.*
of the model of
Car
Customer -
buys >

Cld

FName

LName

pays P>

Payment

Amount : decimal[1]
PayTime : Time[1]

paid for >

image24.png
MEmm? —v&4 ¢ =vorQv0Orart D~ TrO'NE #[

kg

Add Stereotype. Ctrl+Alt+S

© Add Attibute [N

, = Add Operation M
Pl Add Template Parameter

 Delete Attribute »
= Delete Operation »
Delete Template Parameter »

Delete from Model s
Delete from Diagram Delete.

B Copy Cuiec
B2 Copyto Clipbosrd »
Paste cuiey

BB CopyStyletn)

L PasteSyle®)

Depth Arrangement »

Stereotype Visbility
Attribute Compartment Visi
Operation Compartment Vi
+ Extended Viibility -

[<[<]<]

image25.png
Rectangle

pi-Point
pPoint

«constructor»
Rectangle(p1:Point, p2:Point)
wquerys

area) Real

aspect(): Real

“updates
move (delta: Point)
scal (fatio: Real)

image26.png
Patron Member Department

- Memberld : int <<PK>> Departmentld : SQLId
- LastName : String <<unique>> Departmentiame : SQListring
Address : SQLstring

samuuresswu\

image27.png
Patron

Patronid : SQL:1d[1]
LastName : SQL:String(1]
FirstName : SQL:String[1]
Phone : SOLSting[0. 1]
Hobbies : Strings(0.4]

image1.png
toyu.faculty: 11 rows total (approximately) B Mext o Show all | W Sorting (1) "W Columns (5/5) ¥ Filter
21 facld fname Iname ¥ deptCode rank

Paul Smith Cscl Professor
1,012 Mary Tran CsCl Associate Professor
1,013 David Love C5C {NULL)
1,014 Sharon Mannes C5C Assistant Professor
1,015 Daniel Kim CINF Professor
1,016 Andrew Byre CINF Associate Professor
1,017 Deborah Gump ITEC Professor
1,018 Art Allister ARTS Assistant Professor
1,019 Benjamin Yu ITEC Lecturer
1,020 Katrina Bajaj ENGL Lecturer
1,021 Jorginlo Neymar ACCT Assistant Professor

EMA="toyu' AND TAB

image28.jpeg
Student

Enroll P>

Course

image29.png
Workstor 1,

Company

ermployer | employee

o
salary

worker]«

boss
01

<Manages

Account

/ Person
o)

)
\‘\ Corporation

image30.png
m

image31.jpeg
Student

*

Enroll P>

*

Course

image32.jpeg
Student

Enroll P>

Course

image33.jpeg
Student

Enroll P>

0..1

Course

image34.png
1 Contains» 4
Polygon |K>———————=1 point
{ordered}

T
1| GraphicsBundie

color
texture
density

image35.png
season|*

Team Pla
team Y goakesper il

Record

goalsfor
goals against
wins

Iosses

ties

image2.png
B Host 127.0.00

Database: toyu Fﬂ'rable:stud:;nt 7] Data P> Query

IT Basic J Options ¥ Indexes 14 Foreignkeys @ Partitions </> CREATE code </> ALTER code

Mame: |student
Comment:
Columns: lﬂl Add 0 Fermove 4 Up W Dowen
Mame Datatype Length,/Set Unsign.. Allow MN... Zerofill Default
T 1 stuld INT 11 O O O Nodefault
2 fname VARCHAR 20 O O O MNodefault
3 Iname VARCHAR 20 O O O MNodefault
¥ 4 major CHAR 4 O 0O nNuw
¥ 5 minor CHAR 4 O 0O nNuw
6 ach INT 3 o w
¥ 7 advisor INT 11 O 0O nuw

image36.png
Truwk

Sailhoat

image37.png
Tree

{disjoin, incomplete}
species Tree Species.

gowertypes
TreeSpecies

Oak.

image38.jpeg
School 0.1 0.* Sopanment 0.1 (0]
i <<PK>> deptCode : string
<<PK>>schoolCode : string | {housed in <<CK>> deptName : string Awork for 0.1
<<CK>> schoolName : string numStaff : int[0..1] s
0.1 —
ot 1 advisor
major in »
minor in P>
0.*
0.2 *
: rubric\ 0+
Student 0.
Course

<<PK>> stuld : int
fname : string

advisee

lanem : string
ach : int[0..1]
Grade 0.1 0.*

<<PK>> grade : string
gradePoint : int[0..1]

Faculty

<<PK>> courseld : int
number : string

title : string

credits : int[0..1]

Enroll P>

Enroll

results in

n_alerts : int[0..1]

A

is an offering of

<<PK>> facld : int
fname : string
Iname : string
rank : string[0..1]

1 instructor

A

taught by

Class

year : int

<<PK>> classld : int
semester : string

room : string[0..1]

image3.png
NPT TRl @ S0 7 I
B Host 127.00.1 Database:toyu [Table department | Data b Query o

toyu.department: 7 rows total (approximately) >> Mext -~ Showy all | W Sorting
¥ deptCode ' deptName ¥ schoolCode numStaff
ACCT Accounting BUS 10
ARTS Arts H5H
CINF Computer Information Systems C5E 5
Computer Science CSE 12
ENGL English H5H 12
ITEC Information Technology C5E 4
MATH Mathematics CSE 7

image4.png
-

toyu.enroll: 22 rows total (approximately)

¥ stuld

100,001
100,002
100,000
100,001
100,000
100,002
100,000
100,002
100,004
100,005
100,000
100,004

AnNN Nnnc

T classid
10,000
10,000
10,000
10,001
10,001
10,002
10,002
10,003
10,003
10,003
10,003
10,004
10,004

AN NN d

? grade
A

(MULL)

B Mext
n_alerts
0

=T~ R =]

o -

& Shiow all

!

