2/10/2025
Self annotation/notes
Introduction to UML
by K. Yue
1. Introduction to UML
· UML: A set of graphical notations for object-oriented modeling.
· Wikipedia: "The Unified Modeling Language (UML) offers a way to visualize a system's architectural blueprints in a diagram."
· A standard maintained by OMG: OMG's UML page.
· Two major versions:
· Version 1.4.2: international standard released in 2005.
· Version 2.5.1: released in 2017, added nested classifiers and improved behavior models. Specification: https://www.omg.org/spec/UML
· Two main types of diagrams:
· Structure diagrams: model static structures.
· Behavior diagrams: model dynamic behaviors.
· Version 2.5 has 15 diagrams: 7 structure diagrams and 8 behavior diagrams.
· Some Resources:
· OMG UML Resource
· SPARX UML Tutorial.
· We will focus on the class diagram only.
Class Diagram of UML 2.2 diagram (from Wikipedia):
[image: UML 2.2 Diagram]
2. Class Diagrams (Emphasis on DB applications)
2.1 Introduction:
· A static structure diagram in UML.
· "Describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among the classes." -- from Wikipedia.
· Read "class diagram" from Wikipedia: http://en.wikipedia.org/wiki/Class_diagram.
· For a significantly better introduction by IBM: http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/.
· Two kinds of tools for drawing UML diagrams:
· Graphical tools: main purposes are drawing diagrams (e.g., MS Visio, draw io, etc.)
· Computer-Aided Software Engineering (CASE) tools: for software development with some understanding of the semantics of diagram elements (e.g., MagicDraw, IBM Rational Rhapsody, Visual Paradigm, Astah, etc.)
· We use Astah UML Editor
· We will use community version in classroom demonstration, which is now deprecated.
· Students can use the more powerful student version for free: search "astah student license".
· One may also use UML object diagrams to show objects and their associations of a snapshot of the system.
Problem Specification: A faculty member (e.g. Yue, object) advises a student (e.g. Smith)…..
OO/UML Modeling:
Concepts (that have data requirements):
1. Faculty members
a. Class X: have attributes, can form associations, exists by themselves. Faculty Yue. X.
b. Attribute X of Y: no sub-attributes, cannot form association; properties; do not exist by themselves. Right arm (X) of Yue (Y)
c. Association A – X – B : e.g. Yue (A) advises (X) Smith (B).
d. No need to model
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]

2. Student: class
3. Advises: association
[image: A screenshot of a computer

Description automatically generated]

2.2 A Simple Conceptual Modeling Process
1. Study application requirements to gain a good understanding of the problem.
2. Conduct an analysis to extract concepts that may have data requirements.
3. For each concept, design how should it be modeled? Major options are:
1. by attributes
2. by a class
3. by associations between classes (including special associations, such as composition, aggregation, generalization, etc.)
4. no need to model (as it does not represent any data requirement)
These steps are repeated until the model reaches the necessary fidelity, accuracy, and precision.

Example:
Problem. A used car dealership application's subsystem: information about cars and their manufacturers.
Specification description: A car manufacturer has a unique id and name. A car maker may make many cars. For example, Honda, which may have a manufacturer id of 10001, makes Civic and Accord….
Concepts:
1. car: class, X. Bun (object of a class)
2. manufacturer: class
3. unique id X: attribute of manufacturer (e.g. X of Y) (e.g. Honda has the id of 10001 (stereotype: extension in UML)
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]
4. name: attr of manufacturer.
5. Car maker: no need, car maker is the same as manufacturer.
6. Make (many cars): associations X (verb) A (subject) – X (verb) – B (object)
[image: A screenshot of a computer

AI-generated content may be incorrect.]
7. Honda: an object of the manufacturer class. NO need to model; an example
8. ManufacturerId: attribute name
9. 10001: attribute value
10. Civic
11. Accord

Analysis and Design
Some observations:
1. Manufacturer: a class (template) that can be used to initiate many manufacturer objects (instances).
2. Honda: an object of the class Manufacturer.
3. Resolve ambiguous terms: e.g., the term "manufacturer" may refer to the manufacturer class, or a particular manufacturer (i.e., a manufacturer object such as Honda).
4. Define synonym: manufacturer, car manufacturer and car maker may be the same. Different terms can refer to the same concept.
5. "Unique id": may be modeled as an attribute (name), a property of the manufacturer class.
6. Make additional assumptions: E.g., every manufacturer object must have an unique id.
7. 10001: attribute (value) of the id of a manufacturer object.
8. Name: a property of a manufacturer.
9. Another additional assumption: Every manufacturer object must have a name.
10. Car: a class, as there may be many brands of cars.
11. Prepare questions: E.g., do we need to introduce the concept model (e.g., Coupe, Sedan, Si Coupe)?
12. Civic and Accord: object instances of Car.
13. Additional assumption: Every car must have a name as its attribute.
14. Make, or manufacture: a relationship between a manufacturer (object) and a car (object). A manufactor (object) makes (verb: possible asspication) a car (object).
Class Diagram:
[image: car1]
Object Diagram:
[image: car_2]
2.3 Classes
2.3.1 Basics
1. Drawn as a rectangular box.
2. The class names, attributes, and operations may be specified, with selected details in the name, attribute, and operation compartments respectively.
3. Attribute and operation compartments are optional.
4. For DB modeling,
1. The attribute compartment will eventually need to be clearly modeled.
2. The operation compartment may not be needed.
5. The levels of details depend on the phases of modeling. It is a common mistake to specify too much detail in the early modeling phases.
6. As modeling proceeds, more details are added, updated, and refined.
Note that software application modeling and database modeling have different foci.
1. Software modeling: focus on operations (methods, especially public methods).
2. Database modeling: focus on attributes (data).
Example: The following sequence of diagrams of how the modeling of the used car dealership application may proceed.
Initial version: v0.0.1.0:
· Only some major classes, associations, and attributes.
[image: A diagram of a customer

Description automatically generated]
Version v0.0.1.1:
· Add a payment class and some attributes.
[image: A diagram of a company structure

Description automatically generated]
Version v0.0.1.2:
1. Decided to split the concept 'car' into two concepts 'car model' and 'car'. Adjust associations.
2. Add some type information.
[image: A diagram of a car model

Description automatically generated]
Version v0.0.1.3:
1. Add an association between Payment and Car.
2. Add multiplicity of the association "of the model of":
1. A car must be made of one car model.
2. There may be many cars made of the same model.
3. Add multiplicity of 1 to the attributes Amount and PayTime of the class Payment. They are mandatory.
[image: A diagram of a model

Description automatically generated]
· For example, one may focus on the main classes and their associations in the first model, without worrying about the attribute or operation compartments.
· Most UML editors allow controlling visibility of different elements. For example, in Astah:
[image: astah_1]
· A stereotype (specifying the kind of entities) and a property list with tagged values can be added to any compartment.
· Their flexibility allows for customization and extensibility to fit specific applications.
· Additional properties on data members may be specified, such as:
1. Visibility: + (public: +, protected: #, private: -, etc.)
2. data types
3. abstract (in italic) or concrete (as constraints)
4. class members (underscored) or instance members
5. default values
Example: for software modeling:
[image: A screenshot of a computer program

Description automatically generated]
Example: for database modeling.
[image: astah_2]
The classes Patron, Member and Department with some attributes may be modeled in the first draft of the UML class diagram. Boxes in the diagram above:
1. In a subsequent iteration, attributes may be added using settings of the UML tool showing visibility of the attribute members.
2. Data types may be included using predefined data types provided by the tool.
3. In a further iteration, stereotype may be added, such as to identify the primary key <<PK>> and simple candidate key <<unique>>.
4. More specific user-defined types (or implementation types) may be used.
5. Operation members may be added. They are in general less important than data members in data modeling.
6. Multiplicity should eventually be added, as shown in the diagram for Patron below.
[image: astah_3]
· Note that multiplicity can be used to depict nullable and multi-valued attributes. In this example, PatronId is not nullable ([1]), Phone is nullable ([0..1]) and Hobbies can have multiple values ([0..*]).
Check out the introductions to class diagrams from agile modeling and wikipedia.
· Some possible relational database extensions on attributes may include:
1. Multi-valued: * or by using multiplicity.
2. Multiplicity can also be used to indicate whether an attribute is nullable.
3. Derived: <<derived>> using stereotype, \, or using other specific notations
4. Primary key: <<PK>> as stereotype.
5. Candidate keys: <<CK>> as stereotype.
6. Unique field: <<unique>> as stereotype.
7. Nullability: <<nullable>> or by using multiplicity.
8. User-defined or system defined SQL data types.
9. Indexing: <<index>> as stereotype.
· Check with your organizations for UML guidelines on a specific project.
· An example of a database profile for UML: http://www.agiledata.org/essays/umlDataModelingProfile.html
. may be adapted for uses in later phase of modeling.
2.3.2 More Properties of Classes
· A class is a 'first-class citizen.'
· It has attributes.
· It can form associations with other classes.
· It can have operations.
· Objects of a class can exist by themselves.
· It has more structures for modeling data requirements.
· As a comparison, an attribute is not a first-class citizen.
· It does not have sub-attributes.
· It cannot form associations with other elements.
· The existence of an attribute depends on the object..
· Objects can be instantiated from classes.
Example:
[image: asta1]
We may have four objects of the student class: S1, S2, S3 and S4. Each student object represents an individual student in a database application.
We may have three objects of the course class: C1, C2, and C3. Each course object represents an individual course in the database application.
2.4 Associations
· Binary associations are represented by solid lines.
· Important options include:
1. Association names with directional arrows (for reading).
2. Association roles: the role of an object participating in an association.
3. Multiplicities: the allowed number of associated objects.
4. Association attributes can usually stored by promoting an association to an association classes.
5. Qualifiers: association attributes to partition the targeted classes.
6. Navigational requirement: specified by arrows. Usually not used in data modeling.
7. Dependency constraints: by dotted lines.
· Some modeling questions and decisions:
1. Should we model something as a class or as an association?
2. Should we model something as a class or as an attribute?
3. What kind of association should I use? Binary association, association class, n-ary association?
Example: Note that no attribute is shown in this initial phase.
[image: A diagram of a company

Description automatically generated]
Note:
1. Job is an association class.
2. The arrow in the association "works-for" shows the direction of the association.
3. The association "manages" is between two job objects.
4. The {or} designation specifies the partition of the account class into two classes: person (account) and corporate (account).
Example: For:
[image: asta1]
The association Enroll describes the association 'type'. An association is actually between two objects (a student object and a course object). Examples:
S1 -- C1: meaning student S1 is enrolled in course C1.
S1 -- C3: (The associations S1--C2 and S1-C4 do not exist. This means the student S1 has not enrolled in the C2 or C4.)
S2 -- C1
S2 -- C2
S2 -- C4
S3 -- C3
S4 -- C1
S4 -- C4
2.5 Multiplicity
· Multiplicity can be specified by a number, the symbol * (many), a range, or a set. Some example:
· 0..1: zero or 1
· 1..1: only 1
· 1: may be 0..1 or 1..1; usually interpreted as 1..1
· 0..*: zero or many
· 1..*: 1 or many
· *: many; may be 0..* or 1..*
· 1..4: 1 to 4
· {1, 2, 6}: 1, 2 or 6
· {1, 3:5, 7:9}: 1, 3, 4, 5, 7, 8, 9
· Multiplicity is a very common source of errors. Please refer to the explanation in the following diagram until you are very clear about it.
[image: asta 5]
· Meaning:
· Every X object must be associated with n Y objects.
· Every Y object must be associated with m X objects.
Example
What do you think about these class diagrams?
(a)
[image: asta 3]
Assumptions made:
1. A student may take many courses.
2. Not sure whether a student is allowed to take zero course since * (instead of 0..* or 1..* is used).
3. A course may have many students enrolled.
4. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
(b)
[image: asta 4]
Assumptions made:
1. A student must be enrolled in one or more courses (may not be a reasonable assumption).
2. A course may have 0 or more students enrolled.
(c)
[image: asta 2]
Assumptions made:
1. A student can only be enrolled in 0 or 1 course only (sound not reasonable).
2. A course may have many students enrolled.
3. Not sure whether a course has no student enrolled since * (instead of 0..* or 1..* is used).
Aggregation indicator
1. aggregation (hollow diamond) and composition indicator (solid diamond):
2. Aggregation models the ‘a-part-of’ relationship (whole-part). E.g., car-wheel.
3. Composition is a strong form of aggregation: the part's lifecycle is dependent on the whole's lifecycle; e.g. university-department, building-room.
4. They can also be represented by using multiplicity.
Example: Aggregation and Composition
[image: A diagram of a graph

Description automatically generated]
What do you think about this composition and aggregation examples in: http://en.wikipedia.org/wiki/File:Congregationalism?
Ternary Associations
· N-ary associations are represented using a diamond connecting to participating classes.
· Not so common.
· May be modeled as a class instead.
· A ternary association involves three participating objects.
An example from a tutorial:
[image: A diagram of a football team

Description automatically generated]
Notes:
· In modeling, a ternary association can reasonably be replaced by promoting it to a class and add three binary associations.
· Don't use n-ary associations where n>=3 unless you are sure.
Generalization and Specialization
· Generalization is represented by a hollow triangle at the superclass.
· Generalization models the 'a-kind-of’ association.
· It is mainly used to
· manage classes with common data members and methods by putting these common members into their superclass.
· provide inheritance.
· avoid multiple copies of member definition.
· Some options of generalization include:
· discriminator (the name of the partition),
· powertype (a class in which an instance of it is a subclass of the superclass),
· constraints (overlapping, disjoint, complete, incomplete and user defined constraints).
Example:
[image: A diagram of a vehicle

Description automatically generated]
[image: A diagram of a tree

Description automatically generated]
· There are many possible options and extensions.
Constructing class diagrams: some tips
1. There are many methodologies and best practice tips to construct effective class diagrams.
2. There are many possible modeling options: e.g., classes versus attributes, classes versus associations, multiplicity, etc.
3. Need to fully understand the assumptions and implications when making modeling decisions.
4. Do not model implementation details in earlier modeling phases.
3. Example: toyu
A reasonable conceptual model of the toyu database in UML:
[image: A diagram of a computer program

Description automatically generated with medium confidence]

image2.png
Eﬁ Astah

File Edit Diagram Alignment View Tools Window Help

»

EE \ v v v v v v v v

New Project b Open Project

CREATE DIAGRAMS
Class Diagram UseCase Diagram

Statemachine Diagram Activity Diagram

Sequence Diagram Communication Diagram

Component Diagram

Composite Structure
:
Diagram

Deployment Diagram

RECENT PROJECTS

'a'§ car.asta
s 2025 2 4 exl.asta
s 2025 2 3.asta

'a'§ h2sol.asta

'a'§ h1sol class.asta

Welcome to Astah!

To see the latest news about Astah, useful tips and promotions, please connect to the intern
using a proxy, go to [Tool] - [System Properties] - [Network] to set up.

@00 A
Qs Rl Al r QAW -+--0 - A8 LS Kt

(.)
astah<.community

RECENT PROJECTS

LEARN UML, AGILE, AND ASTAH TIPS [18]

Free Code Generator for Astah
Nav 333000

Mow 1o open twe flles simultaneousty on Astah on Mac
Now 30, 2088

Lecallzing Astah - Chinese version (SergUfied) is tow

avalabie!
Nov 13, 2013

Check out our Tutorial Videos
B

=l C e iy, 52
e EE Dt oo
ﬁﬁnm-mwmm o Know the difference

PHP, Cos, Co, ER Reverse engineering
and more are possible using Free Plug:
Ins with Astah!

You can also create your own Plug-in
using the Aszah APT and SOK!

aBT Ceveiopment Titorial

Changing how you design software and systems

http://astah.net a S

image3.png
EN Astah - [no_title] (*)

File Edit Diagram Alignment View Tools Window Help

v

EEEDO — QQrl

vﬁv|-v @'&'é'x'ﬁ'%“'

Structure Inheritance Map Diagram 4
(=1~ 71 no_title 4
[java
Class Diagram0
Efaculty

Class Diagram0

xBEmRm? —

'_!E_‘F‘?""-"'O'Q"’OO'E"I‘_D """ T'D'\ "v

pkg

Template Parameter Constraint
Association Property
Generalization Dependency
Base Stereotype Attribute Operation

Namespace

Name faculty -
Visibility public

Abstract false

Leaf false

Active false

Definition

image4.png
File Edit Diagram Alignment View Tools Window Help

k=D Qe @Ay e 2SR

Structure Inheritance Map Diagram : Class Diagram0

= [no_title)/ Class Dingrs
[java ——
CIassDiagramO @gﬁﬁl? =T ol ““""O'Q'DO'E"L_D """ T'D'\ ,"
Efaculty
gsmdent] Pkg

faculty Student
g advises > g

Association End B Constraint B
Association End A Constraint A
Base Stereotype Constraint

Name ~—

Definition

image5.png
Structure Inheritance Map Diagram : Class Diagram0
(=1~ 71 no_title =

J;:sDiagramO RERER? =54 T o QOO =L D T[I'\& *E./3*
ECar

= gManufacturer
“ manufacturerld:int

pkg

Car Manufacturer

<<unique>> manufacturerld

Base Stereotype%
Name —~
wigue €—0

image6.png
= - N eyl

v

v ™~

v

v

Structure Inheritance Map Diagram
(=1~ 71 no_title
[java

Class Diagram0

ECar

= gManufacturer
“ manufacturerld:int

: Class Diagram0

Base Stereotype Cogglraint_

Name

Add | Delete

I Il -~]

pkg

Car

Manufacturer

manufacturerld

image7.png
[Z]Class Diagram0 / Class Diagram

@gbh?—v_rE_??...ovonvl-OOval_D Tva\ __fv

pkg

Car T Manufacturer T
|
Add Stereotype
© Add Attribute
= Add Operation
Add Template Parameter

1 manufacturerld : int

" Delete Attribute
Delete Operation
Delete Template Parameter

x Delete from Model
X Delete from Diagram
B Copy
EB Copy to Clipboard
iii Paste
EBy Copy Style(Y)

k Paste Style(E)

Depth Arrangement

Stereotype Visibility
Attribute Compartment Visibility
Operation Compartment Visibility

ANV _ . Auto Resize

83 j @ Set Color ...

Ctrl+Alt+S

Ctrl+R

Ctrl+M

Ctrl+D
Delete

Ctrl+C

Ctrl+V

Show/Hide Namespace >
Visibility Kind Visibility

s Attribute/Operation Visibility ...

> Visibility of Attribute/Oepration >

Attribute Type Visibility

Attribute Initial Value Visibility

Attribute Stereotype Visibility
s Attribute Constraint Visibility

Operation Return Type Visibility
Operation Parameter Visibility
Operation Parameter Type Visibility
> Operation Parameter Direction Kind Visibility
Operation Stereotype Visibility
Operation Constraint Visibility

. Template Bound Information Visibility
Template Formal Parameter Visibility

image8.png
s [Elciass Diagram0 / Class Diagram

J;:sDiagramO RERER? =54 T o QOO =L D T[I'\& *E./3*

ECar

gManufacturer

pkg

Car Manufacturer

< makes manufacturerld
name

Association End B Constraint B

Association End A Constraint A

Base Stereotype Constraint
Name ‘makes \
Definition

image9.jpeg
Manufacturer

- MId : int[1]
- Name : string[1]

Car

makes P>

- Name : string[1]

image10.jpeg
Honda:

10001

image11.jpeg
Manufacturer

Mid

makes P>

buys }

Customer

Car

image12.jpeg
Manufacturer
Car
il makes P> Name
Name
buys | g
Customer Payment
cid Amount
FName pays | 4 -
PayTime
LName

image13.jpeg
Manufacturer

Mid
Name

CarModel

makes P>

Customer

Cld
FName

LName

Name

Vin
buys >

pays >

Payment

Amount : decimal
PayTime : Time

A

of the model of

Car

image14.jpeg
Manufacturer CarModel
Mid makes P> Name
Name 1
A 0.*
of the model of
Car
Customer -
buys >

Cld

FName

LName

pays P>

Payment

Amount : decimal[1]
PayTime : Time[1]

paid for >

image15.png
MEmm? —v&4 ¢ =vorQv0Orart D~ TrO'NE #[

kg

Add Stereotype. Ctrl+Alt+S

© Add Attibute [N

, = Add Operation M
Pl Add Template Parameter

 Delete Attribute »
= Delete Operation »
Delete Template Parameter »

Delete from Model s
Delete from Diagram Delete.

B Copy Cuiec
B2 Copyto Clipbosrd »
Paste cuiey

BB CopyStyletn)

L PasteSyle®)

Depth Arrangement »

Stereotype Visbility
Attribute Compartment Visi
Operation Compartment Vi
+ Extended Viibility -

[<[<]<]

image16.png
Rectangle

pi-Point
pPoint

«constructor»
Rectangle(p1:Point, p2:Point)
wquerys

area) Real

aspect(): Real

“updates
move (delta: Point)
scal (fatio: Real)

image17.png
Patron Member Department

- Memberld : int <<PK>> Departmentld : SQLId
- LastName : String <<unique>> Departmentiame : SQListring
Address : SQLstring

samuuresswu\

image18.png
Patron

Patronid : SQL:1d[1]
LastName : SQL:String(1]
FirstName : SQL:String[1]
Phone : SOLSting[0. 1]
Hobbies : Strings(0.4]

image19.jpeg
Student

Enroll P>

Course

image20.png
Workstor 1,

Company

ermployer | employee

o
salary

worker]«

boss
01

<Manages

Account

/ Person
o)

)
\‘\ Corporation

image21.png
m

image22.jpeg
Student

*

Enroll P>

*

Course

image23.jpeg
Student

Enroll P>

Course

image24.jpeg
Student

Enroll P>

0..1

Course

image25.png
1 Contains» 4
Polygon |K>———————=1 point
{ordered}

T
1| GraphicsBundie

color
texture
density

image26.png
season|*

Team Pla
team Y goakesper il

Record

goalsfor
goals against
wins

Iosses

ties

image27.png
Truwk

Sailhoat

image28.png
Tree

{disjoin, incomplete}
species Tree Species.

gowertypes
TreeSpecies

Oak.

image29.jpeg
School 0.1 0.* Sopanment 0.1 (0]
i <<PK>> deptCode : string
<<PK>>schoolCode : string | {housed in <<CK>> deptName : string Awork for 0.1
<<CK>> schoolName : string numStaff : int[0..1] s
0.1 —
ot 1 advisor
major in »
minor in P>
0.*
0.2 *
: rubric\ 0+
Student 0.
Course

<<PK>> stuld : int
fname : string

advisee

lanem : string
ach : int[0..1]
Grade 0.1 0.*

<<PK>> grade : string
gradePoint : int[0..1]

Faculty

<<PK>> courseld : int
number : string

title : string

credits : int[0..1]

Enroll P>

Enroll

results in

n_alerts : int[0..1]

A

is an offering of

<<PK>> facld : int
fname : string
Iname : string
rank : string[0..1]

1 instructor

A

taught by

Class

year : int

<<PK>> classld : int
semester : string

room : string[0..1]

image1.png
Diagram

—

Structure.
Diagram

Behavior
Diagram

Class,
Diagram

Component
Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure.
Diagram

Deployment

Diagram

Package
Diagram

Interaction State Machine

Diagram

Diagram

Notation: UML

5

Sequence
Diagram

Communication
Diagram

Tnteraction
Overview
Diagram

Timing
Diagram

